Développement : Théorème de Perron Frobenius pour les matrices à coefficients strictement positifs

Détails/Enoncé :

Soit $A \in M_n(\mathbb{R})$ à coefficients strictement positifs. Alors $\rho(A)$, qui est le module maximal des valeurs propres de $A$, est une valeur propre simple de $A$. De plus il n'y a pas d'autres valeurs propres ayant pour module $\rho(A)$.

Autres années :

Versions :

Références utilisées dans les versions de ce développement :

Analyse matricielle , Rombaldi (utilisée dans 21 versions au total)