(2019 : 154 - Sous-espaces stables par un endomorphisme ou une famille d’endomorphismes d’un espace vectoriel de dimension finie. Applications.)
Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple dans le cas d’une matrice diagonalisable ou dans le cas d’une matrice nilpotente d’indice maximum. $\\$ L’étude des endomorphismes cycliques et des endomorphismes semi-simples trouvent tout à fait leur place dans cette leçon. Dans le cas des corps $\textbf{R}$ ou $\textbf{C}$, on pourra, si on le souhaite, caractériser ces derniers par la fermeture de leur orbite. $\\$ La réduction des endomorphismes normaux et l’exemple de résolutions d’équations matricielles peuvent être présentés en applications. $\\$ La décomposition de Frobenius constitue également une application intéressante de cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. $\\$ Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.
Pas de réponse fournie.
Pas de réponse fournie.
À la fin du développement beaucoup de question sur celui-ci, le jury semblait ne pas comprendre certains points. Ensuite on m'a demandé de déterminer les sous-espaces stables par l'endomorphisme représenté dans la base canonique de $K^4$ par la matrice
\[\left(
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}
\right).\]
Ensuite un exercice en rapport avec le développement : on pose $F_x=\ker (\pi_{f,x}(f))$, montrer que $E=\cup_{x\in E} F_x$, que peut-on dire de $\pi_{f,x}$ et $\pi_f$ ? ($\pi_{f,x}\mid \pi_f$), que dire des diviseurs de $\pi_f$ : il y en a un nombre fini à coefficient multiplicatif près. Quelle condition est suffisante pour que $\pi_{f,x}= \pi_f$ ?
Enfin sur le plan : preuve du critère de diagonalisation sur les corps finis, préciser l'énoncé de la décomposition de Dunford de l'exponentielle de $f$ ($k=\mathbb{R}$ ou $\mathbb{C}$, il faut que $f$ admette une décomposition de Dunford), puis de montrer l'équivalence $f$ diagonalisable ssi $exp(f)$ l'est. En toute fin on m'a demandé la preuve du théorème de Maschke, et pourquoi quand on moyennise le produit scalaire cela reste un produit scalaire.
Le jury était plutôt neutre, l'un avait l'air agacé parfois.
J'ai été surpris des questions sur mon développement qui était classique et pas compliqué.
17.25
Pas de réponse fournie.
Pas de réponse fournie.
Il n’y a eu que très peu de questions sur les représentations (que des bases, définitions, premières propriétés, exemples). La majeure partie des questions était sur la décomposition de dunford : démonstration de l’existence, détermination de la décomposition pour une matrice 2x2 triangulaire supérieure avec un paramètre alpha, complexité de l’algorithme.
Le jury était très agréable.
Pas de réponse fournie.
13.5