Leçon 154 * : Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.

(2016) 154
(2018) 154

Dernier rapport du Jury :

(2017 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple dans le cas d’une matrice diagonalisable ou dans le cas d’une matrice nilpotente d’indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutants entre eux ou sur la théorie des représentations.

(2016 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Dans cette leçon, il faut présenter des propriétés de l’ensemble des sous-espaces stables par un endomorphisme. Des études détaillées sont les bienvenues, par exemple le cas d’une matrice diagonalisable ou le cas d’une matrice nilpotente d’indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans cette leçon. Il ne faut pas oublier d’examiner le cas des sous-espaces stables par des familles d’endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.
(2015 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Les candidats doivent s'être interrogés sur les propriétés de l'ensemble des sous-espaces stables par un endomorphisme. Des études détaillées de cas sont les bienvenues, par exemple le cas d'une matrice diagonalisable, le cas d'une matrice nilpotente d'indice maximum. La décomposition de Frobenius trouve tout à fait sa place dans la leçon. Notons qu'il a été ajouté à l'intitulé la notion de familles d'endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.
(2014 : 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.) Les candidats doivent s'être interrogés sur les propriétés de l'ensemble des sous-espaces stables par un endomorphisme. Des études détaillées de cas sont les bienvenues. La décomposition de Frobenius trouve tout à fait sa place dans la leçon. Notons qu'il a été ajouté la notion de familles d'endomorphismes. Ceci peut déboucher par exemple sur des endomorphismes commutant entre eux ou sur la théorie des représentations.

Plans/remarques :

2017 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


2016 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


2015 : Leçon 154 - Sous-espaces stables par un endomorphisme ou une famille d'endomorphismes d'un espace vectoriel de dimension finie. Applications.


Retours d'oraux :

Pas de retours pour cette leçon.