(2017 : 152 - Déterminant. Exemples et applications.)
Dans cette leçon, il faut commencer par définir correctement le déterminant. Il est possible d’entamer la leçon en disant que le sous-espace des formes n-linéaires alternées sur un espace de dimension n est de dimension 1 et, dans ce cas, il est essentiel de savoir le montrer. Le plan doit être cohérent ; si le déterminant n’est défini que sur
$R$ ou $C$, il est délicat de définir $\det(A-X I_n)$ avec A une matrice carrée. L’interprétation du déterminant comme volume est essentielle. On peut rappeler son rôle dans les formules de changement de variables, par exemple pour des transformations de variables aléatoires.
Le calcul explicite est important, mais le jury ne peut se contenter d’un déterminant de Vandermonde ou d’un déterminant circulant. Les opérations élémentaires permettant de calculer des déterminants, avec des illustrations sur des exemples, doivent être présentées. Il est bienvenu d’illustrer la continuité du déterminant par une application, ainsi que son caractère polynomial. Pour les utilisations des propriétés topologiques, on n’ommetra pas de préciser le corps de base sur lequel on se place.
S’ils le désirent, les candidats peuvent s’intéresser aux calculs de déterminants sur Z avec des méthodes
multimodulaires. Le résultant et les applications simples à l’intersection ensembliste de deux courbes algébriques planes peuvent aussi trouver leur place dans cette leçon pour des candidats ayant une pratique de ces notions.
Pas de réponse fournie.
Pas de réponse fournie.
Montrer det(fog)=det(f)det(g)
Sur quels corps det est continue?
Donner un exemple où l'on a exactement dd' points dans le théorème de bezout ( P= (x-x_1)...(x-x_d) et Q=(Y-y_1)...(Y-y_d') )
GLn(R) est il connexe par arcs, puis montrer que non.
Et Gln(C) , avec une idée d'une demo.
Aide
Pas de réponse fournie.
12