(2020 : 101 - Groupe opérant sur un ensemble. Exemples et applications.)
Dans cette leçon, au-delà de la présentation du matériel théorique indispensable, le choix, l’organisation et la pertinence des illustrations sont des éléments forts de l’appréciation. Les deux facettes de l’action d’un groupe G sur un ensemble X doivent être maîtrisées : l’application de $G \times X$ vers X et le morphisme de G vers $\mathfrak{S}(X)$. La relation entre orbite et stabilisateur qui découle des liens entre ces points de vue est incontournable ainsi que des exemples de son utilisation. Il faut savoir utiliser des actions bien choisies pour obtenir des informations soit sur un ensemble X donné, soit sur un groupe G donné et faire apparaître des sous-groupes intéressants de G comme stabilisateurs. Par ailleurs, la présentation doit illustrer comment l’étude de certaines actions revient à classifier certains objets, soit en trouvant un représentant simple de chaque orbite, soit en dégageant des invariants caractérisant les orbites. Les actions de groupes interviennent aussi efficacement dans des problèmes de dénombrements,
notamment via la formule de Burnside.
Les exemples peuvent être internes à la théorie des groupes (action naturelle de $\mathfrak_n$ sur $\{1,\ldots, n\}$, action par translation ou par conjugaison, etc). Mais il est souhaitable d’emprunter aussi à d’autres domaines (action sur des anneaux, des espaces de matrices ou des espaces de polynômes, représentations linéaires, etc). La géométrie fournit aussi de nombreux exemples pertinents (groupes d’isométries d’un solide ou d’un polygone régulier).
Pour aller plus loin, on peut aborder l’action de $PGL_2(K)$ sur la droite projective menant au birapport ou celle de $SL_2(Z)$ sur le demi-plan de Poincaré ou les preuves par actions de groupes des théorèmes de Sylow ou encore d’autres actions donnant lieu à des isomorphismes exceptionnels. Il est aussi
possible de s’intéresser aux aspects topologiques ou différentiels liés à certaines actions.
101 : Groupe opérant sur un ensemble. Exemples et applications.
161 : Isométries d’un espace affine euclidien de dimension finie. Applications en dimensions 2 et 3.
Pas de réponse fournie.
Pas de réponse fournie.
Dans Lie-Kolchin, où vous servez vous de l'hypothèse "G non abélien"?
-A la fin on écrit D^(l-1)(G)=D(D^(l-2)(G)), ce qui n'est possible que parce que l>=2, car G non abélien.
Montrez le théorème de trigonalisation simultanée dans le cas abélien?
-On a plus besoins d'aucune hypothèse sur la partie si ce n'est qu'elle est abélienne. La récurrence ce passera exactement comme dans Lie-Kolchin. Le cas trivial est le cas où tous les éléments sont des homotéthies. Sinon il existe un élément qui a un sous-espace propre non triviale et non tout l'espace, c'est ce sous espace qui permet de conclure par récurrence sur la dimension.
Connaissez-vous un exemple de sous groupe résoluble connexe de GLn(C)?
-Le sous groupe des matrices triangulaires supérieures inversibles.
Plusieurs définitions équivalentes de groupe résoluble?
-Définition par le groupe dérivée et par la suite de sous groupes distingués.
Décrire les classes de conjugaison de Sn?
-Une classe est déterminée par une partition de n.
Les donner et les dénombrer pour n=5.
Quels sont les éléments du groupe symétrique qui peuvent s'écrire comme des carrées?
-On regarde d'abord ce qui ce passe sur les cycles et on voit que les carrées sont les éléments qui n'ont dans leur décomposition en cycles à supports disjoints que des cycles impairs et des paires de cycles pairs. (Il m'a fallut pas mal d'aide pour celle là)
Si l'on choisit uniformément deux éléments dans un groupe fini G peut on estmer la proba qu'ils commutent l'un avec l'autre?
-Je n'ai pas réussi à conclure. Si G est abélien la prob est 1 sinon: on écrit ce que l'on cherche à calculer comme un quotient, puis on développe ça comme une somme sur les éléments de G, comme G est abélien #(G/Z(G))>=4, c'est cette inégalité qui pourra nous aider.
Pouvez vous montrer que le centre d'un p-groupe est non trivial?
-Démonstration classique.
Quels sont le groupe d'ordre 49?
-Selon le thm de structure des GAF, il n'y a que deux groupes abéliens non isomorphes, tous les groupes d'ordre p^2 sont abéliens.
Les groupes d'ordre p^2?
-Même réponse il suffit de changer 7 par p.
On a une représentation du groupe symétrique via les matrices de permutations, pouvez vous donner toutes les sous-représentations irréductibles de cette représentation?
-Soit (ei)_i une base de R^n S_n agit sur R^n par f.ei=ef(i). La droite engendrée par la somme des vecteurs de la base est invariante. L'hyperplan d'équation f(somm(liei))=somme(li)=0 en est un supplémentaire stable. A isomorphisme près la théorie des représentation donne l'unicité.
Oui mais pouvez vous montrez que ce sont bien les seules, pas à isomorphismes près?
-On finit par y arriver par le calcul.
Le jury aidait beaucoup et était sympathique.
Pas de réponse fournie.
17.25
101 : Groupe opérant sur un ensemble. Exemples et applications.
Pas de réponse fournie.
Pas de réponse fournie.
Qqs questions sur le développement:
-pourquoi G/H abélien <=> D(G)inclus dans H
-pourquoi G/H isomorphe à Z/pZ
Surtout des questions sur le plan :
-qu'est-ce qu'une action n-2 transitive
-démo des isomorphismes exceptionnels (en particulier PSl(2,F3)=A4)
-j'avais parlé de représentation par permutation donc ils m'ont demandé de refaire la table de S4 en gros
-pourquoi la somme des carrés des degrés vaut le cardinal du groupe ?
-un seul exercice : action de On par congruence sur Sn++, quels sont les invariants ?
Bienveillants, ils sont là pour qu'on donne le meilleur de nous-mêmes.
J'ai eu de la chance sur le tirage. Les examinateurs ne vont pas chercher la petite bête et vérifient surtout si vous connaissez ce que vous avez mis dans le plan. Il faisait 33°C à Lille à ce moment là (premier jour) donc c'était épuisant.
Pas de réponse fournie.
101 : Groupe opérant sur un ensemble. Exemples et applications.
Pas de réponse fournie.
Pas de réponse fournie.
Quelques question de détermination de p-Sylow de groupe donnée comme S4. Détermination des groupes à 2 classes de conjugaison (il n'y a que Z/2Z).
Ne laissait rien paraître.
Pas de réponse fournie.
Pas de réponse fournie.