Leçon 106 : Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications

(2016) 106
(2018) 106

Dernier rapport du Jury :

(2017 : 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications) Cette leçon ne doit pas se résumer à un catalogue de résultats épars sur $GL(E)$. Il est important de savoir faire correspondre les sous-groupes du groupe linéaire avec les stabilisateurs de certaines actions naturelles (sur des formes quadratiques, symplectiques, sur des drapeaux, sur une décomposition en somme directe, etc. ). On doit présenter des systèmes de générateurs, étudier la topologie et préciser pourquoi le choix du corps de base est important. Les liens avec le pivot de Gauss sont à détailler. Il faut aussi savoir réaliser $\mathfrak{S}_n$ dans $GL(n,K)$ et faire le lien entre signature et déterminant. S’ils le désirent, les candidats peuvent aller plus loin en remarquant que la théorie des représentations permet d’illustrer l’importance de $GL_n(C)$ et de son sous-groupe unitaire.

(2016 : 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupe de $GL(E)$. Applications.) Cette leçon ne doit pas se résumer à un catalogue de résultats épars sur $GL(E)$. Il est important de savoir faire correspondre les sous-groupes du groupe linéaire avec les stabilisateurs de certaines actions naturelles (sur des formes quadratiques, symplectiques, sur des drapeaux, sur une décomposition en somme directe, etc.). On doit présenter des systèmes de générateurs, étudier la topologie et préciser pourquoi le choix du corps de base est important. Les liens avec le pivot de Gauss sont à détailler. Il faut aussi savoir réaliser $\mathfrak{S}_n$ dans $GL(n,K)$ et faire le lien entre signature et déterminant. S’ils le désirent, les candidats peuvent aller plus loin en remarquant que la théorie des représentations permet d’illustrer l’importance de $GL_n(C)$ et de son sous-groupe unitaire.
(2015 : 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications.) Cette leçon est souvent présentée comme un catalogue de résultats épars et zoologiques sur $GL(E)$. Il serait bien que les candidats unifient la présentation de la leçon en faisant correspondre les sous-groupes du groupe linéaire avec les stabilisateurs de certaines actions naturelles (sur des formes quadratiques, symplectiques, sur des drapeaux, sur une décomposition en somme directe, etc.). À quoi peuvent servir des générateurs du groupe $GL(E)$ ? Qu'apporte la topologie dans cette leçon ? Il est préférable de se poser ces questions avant de les découvrir le jour de l'oral. Certains candidats affirment que $GL_n(\mathbb{K})$ est dense (et ouvert) dans $M_n(\mathbb{K})$. Il est judicieux de préciser les hypothèses nécessaires sur le corps $\mathbb{K}$ ainsi que la topologie sur $M_n(\mathbb{K})$. La présentation du pivot de Gauss et de ses applications se justifient pleinement. Il faut aussi savoir réaliser $\mathfrak{S}_n$ dans $GL(n,\mathbb{K})$ et faire le lien entre signature et déterminant. Dans le même ordre d'idée, la théorie des représentations permet d'illustrer, dans les leçons plus robustes, l'omniprésence de $GL_n(\mathbb{C})$ et de son sous-groupe unitaire.
(2014 : 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications.) Cette leçon est souvent présentée comme un catalogue de résultats épars et zoologiques sur $GL(E)$. Il faudrait que les candidats sachent faire correspondre sous-groupes et noyaux ou stabilisateurs de certaines actions naturelles (sur des formes quadratiques, symplectiques, sur des drapeaux, sur une décomposition en somme directe, etc.). À quoi peuvent servir des générateurs du groupe $GL(E)$ ? Qu'apporte la topologie dans cette leçon ? Il est préférable de se poser ces questions avant de les découvrir le jour de l'oral. Certains candidats affirment que $GL_n(K)$ est dense (respectivement ouvert) dans $M_n(K)$ . Il est judicieux de préciser les hypothèses nécessaires sur le corps K ainsi que la topologie sur $M_n(K)$. Il faut aussi savoir réaliser $S_n$ dans $GL(n,R)$ et faire le lien entre signature et déterminant.

Plans/remarques :

2017 : Leçon 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications


2016 : Leçon 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupe de $GL(E)$. Applications.


2015 : Leçon 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications.


Retours d'oraux :

2016 : Leçon 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupe de $GL(E)$. Applications.

  • Leçon choisie :

    106 : Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupe de $GL(E)$. Applications.

  • Autre leçon :

    142 : Algèbre des polynômes à plusieurs indéterminées. Applications.

  • Développement choisi : (par le jury)

    Décomposition polaire

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Une question sur le développement : pourquoi on a $\mu_i ^2 = \mu_i ' ^2 \iff \mu_i = \mu_i '$ (j'avais donné l'argument à l'oral) ? Pourquoi ces valeurs propres sont-elles bien positives ?

    On considère la décomposition $\nu : O_n(\mathbb{R}) \times T_n^+(\mathbb{R}) \to GL_n(\mathbb{R})$ avec $T_n^+(\mathbb{R})$ ensemble des matrices triangulaires supérieures à coefficients diagonaux strictement positifs. A quel résultat est-elle liée ? Orthonormalisation de Gram-Schmidt. Quelle est l'expression de $\mu^{-1} \circ \nu$ ? S'écrit facilement.

    Ensuite, plusieurs questions sur le plan, je ne me souviens pas de toutes, mais en tout cas : démonstration des isomorphismes exceptionnels (cf. Perrin), démonstration de la connexité de $GL_n(\mathbb{C})$, cas de $\mathbb{R}$.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Plutôt sympa. Un des membres du jury n'a pas dit un mot.
    Un autre me demandait tout le temps de réexpliquer un argument alors que ça n'avait pas l'air de poser problème aux autres.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    17


2015 : Leçon 106 - Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications.

  • Leçon choisie :

    106 : Groupe linéaire d'un espace vectoriel de dimension finie $E$, sous-groupes de $GL(E)$. Applications.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Théorème du point fixe de Kakutani et sous-groupes compacts de GLn(R)

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    A la suite du développement sur Kakutani : que peut on dire des sous groupes finis de GL2 ? Indication : on pourra utiliser le développement que vous venez de prouver... On se ramène aux sous groupes finis de O2. Puis comme sous-question : que peut on dire des sous groupes de SO2 ? On montre finalement qu'ils sont cycliques et puis rapidement pour le cas de O2 on dit que ça fait le diédral.

    Etant donné deux matrices J=(1 1, 0 1), K = (1 1, -1 0), montrer qu'elles engendrent SL2(Z). Sous-question : est ce que les transvections engendrent SL2(Z) ? On adapte le pivot de Gauss pour montrer que oui, et en calculant J^n et JK on obtient toutes les transvections.

    Des questions de topologie : pourquoi est ce que l'application inverse est un homéo ? Réponse avec la formule de la comatrice. Est ce un difféomorphisme ? Je pars dans les calculs de la différentielle en A pendant que le jury essaye de me faire remarquer que comme tout est polynomial, ça marche tout seul, et que pour montrer que la différentielle est bijective, il suffit de remarquer que l'application inverse est une involution.

    Montrer que les matrices diagonalisables sont denses dans M_n(C). Pas trop eu le temps de finir la question, j'ai expliqué avec les mains qu'il faut perturber la matrice pour que le poly caract soit scindé à racines simples.

    Une dernière question "pédagogique" : si vous enseignez cette partie à une classe, quels seraient les points délicats sur lesquels il faudrait insister ? Réponse : le lien avec la géométrie pour les petites dimensions, avec acquiescement du jury (notamment parce que j'ai pas mal galéré pour les sous groupes de SO2...)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Les questions étaient de niveau moyen, mais le jury n'était pas très attentif et blaguait beaucoup entre eux... Mais jury plutôt sympathique et enclin à aider.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de questions sur le plan, et le jury qui semblait pas trop concentré pendant les questions.

  • Note obtenue :

    16


Références utilisées dans les versions de cette leçon :

Groupes de Lie classiques, Mneimné, Testard (utilisée dans 23 versions au total)
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni (utilisée dans 91 versions au total)
Algèbre Géométrique, Artin (utilisée dans 2 versions au total)