Développement : Structure des groupes abéliens finis

Détails/Enoncé :

Soit $G$ un groupe abélien fini non trivial. Il existe un entier $r \ge 1$ et des entiers $n_1 , \ldots , n_r \ge 2$ tels que $n_r | n_{r-1} | \cdots | n_1 $ et
$$G \simeq \mathbb{Z}/n_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/n_r \mathbb{Z}$$

Autres années :

Versions :

  • Auteur :
  • Remarque :
    D'après moi pour les leçons : 102, 104, 107, 120 et très éventuellement 142 (pour la partie unicité).

    C'est vraiment bien fait dans le livre de G. Berhuy (que je trouve remarquable à titre personnel), donc si vous cherchez une bonne source n'hésitez pas à y jeter un coup d'oeil.

    Il est indispensable de savoir montrer que dans un groupe abélien fini, il existe un élément d'ordre l'exposant du groupe...

    NB : tous mes développements sont généralement très détaillés car j'ai besoin de bien comprendre toutes les étapes. En l'état ils sont donc généralement trop longs pour tenir en 15 mins, et les parties "faciles" ne sont donc pas à mentionner ou juste à l'oral.
    J'écris assez mal également, toutes mes excuses.
  • Référence :
  • Fichier :