(2014 : 120 - Anneaux $Z/nZ$. Applications.)
Cette leçon, plus élémentaire, demande toutefois une préparation minutieuse. Tout d'abord $n$ n'est pas forcément un nombre premier. Il serait bon de connaître les sous-groupes de $Z/nZ$ et les morphismes de groupes de $Z/nZ$ dans $Z/mZ$.
Bien maîtriser le lemme chinois et sa réciproque. Savoir appliquer le lemme chinois à l'étude du groupe des inversibles. Distinguer clairement propriétés de groupes additifs et d'anneaux. Connaître les automorphismes, les nilpotents, les idempotents. Enfin, les candidats sont invités à rendre hommage à Gauss en présentant quelques applications arithmétiques des anneaux $Z/nZ$, telles l'étude de quelques équations diophantiennes bien choisies.