Soit $p$ un nombre premier impair tel que $q = 2p+1$ soit premier. Alors il n'existe pas de triplet $(x,y,z) \in \mathbb{Z}^3$ tel que $x^p + y^p + z^p = 0$ et $xyz \not=0 [p]$.
Développement consistant d'un développement dans lequel on montre 6 petits résultats élémentaires.
Selon moi, se recase dans les leçons: 120, 121, 122, 123, 126, 142 et 190.
Développement n°17 sur 28.
Pour une version de rekasator qui marche aller sur: https://docs.google.com/document/d/1vnBvwVGapXvQC4cU5CHUJWo04E4eezzDSjSIDRekaPE
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.