(2015 : 126 - Exemples d'équations diophantiennes.)
Il s'agit d'une leçon nouvelle, ou plus exactement d'une renaissance. On y attend les notions de bases servant à aborder les équations de type $ax+by = d$ (identité de Bezout, lemme de Gauss), les systèmes de congruences, mais aussi bien entendu la méthode de descente et l'utilisation de la réduction modulo un nombre premier $p$.
La leçon peut aussi dériver la notion de factorialité, illustrée par des équations de type Mordell, Pell-Fermat, et même Fermat (pour $n= 2$, ou pour les nombres premiers de Sophie Germain.