(2016 : 126 - Exemples d'équations diophantiennes.)
Dans cette leçon on doit présenter les notions de bases servant à aborder les équations de type $ax + by=d$ (identité de Bezout, lemme de Gauss), les systèmes de congruences, mais aussi bien entendu la méthode de descente de Fermat et l’utilisation de la réduction modulo un nombre premier p.
La leçon peut aussi dériver vers la notion de factorialité, illustrée par des équations de type Mordell, Pell-Fermat, et même Fermat (pour $n=2$, ou pour les nombres premiers de Sophie Germain).