(2017 : 107 - Représentations et caractères d'un groupe fini sur un $\mathbb{C}$-espace vectoriel. Exemples.)
Il s’agit d’une leçon où théorie et exemples doivent apparaître. D’une part, il est indispensable de savoir dresser une table de caractères pour des petits groupes, et d’autre part, il faut savoir tirer des informations sur le groupe à partir de sa table de caractères, et être capable de trouver la table de caractères de certains sous-groupes. Les représentations peuvent provenir d’actions de groupes sur des ensembles finis, de groupes d’isométries, d’isomorphismes exceptionnels entre groupes de petit cardinal. Inversement, on peut chercher à interpréter des représentations de façon géométrique, mais il faut avoir conscience qu’une table de caractères provient généralement de représentations complexes a priori non réelles. La présentation du lemme de Schur est importante et ses applications doivent être parfaitement maîtrisées. S’ils le désirent, les candidats peuvent s’aventurer dans la construction de l’icosaèdre à partir de la table de caractères de $\mathfrak{A}_5$ en utilisant l’indice de Schur (moyenne des caractères sur les carrés des éléments du groupe) ou évoquer la transformée de Fourier.
107 : Représentations et caractères d’un groupe fini sur un C-espace vectoriel. Exemples.
171 : Formes quadratiques réelles. Coniques. Exemples et applications.
Pas de réponse fournie.
Pas de réponse fournie.
Aucune question sur le plan ou le développement. On m'a par contre demandé de mettre en application le théorème pour déterminer les sous-groupe distingués de S4. Puis le jury est parti assez loin dans les questions, on a dérivé sur les transvections...
Un des jurés a presque monopolisé la parole en posant quasiment toutes les questions (la seule femme du jury n'en a posé aucune). Le jury m'alimentait en permanence de questions, de sorte que je ne reste pas sans rien faire au tableau même quand je ne trouvais pas les réponses. L'expérience était vraiment positive, même si la note n'était pas très bonne à l'arrivée.
Un peu surpris qu'il n'y ait pas de questions sur le plan ou le développement. J'avais à disposition un tableau blanc (velleda).
8