(2014 : 107 - Représentations et caractères d'un groupe fini sur un $\mathbb{C}$-espace vectoriel.)
Il s'agit d'une leçon où théorie et exemples doivent apparaître. Le candidat doit d'une part savoir dresser une table de caractères pour des petits groupes. Il doit aussi savoir tirer des informations sur le groupe à partir de sa table de caractères, et aussi savoir trouver la table de caractères de certains sous-groupes.
Les développements prouvent souvent qu'un candidat qui sait manier les techniques de base sur les caractères ne sait pas forcément relier ceux-ci aux représentations.
Dans le même ordre d'idée, le lemme de Schur est symptomatique d'une confusion : dans le cas où les deux représentations $V$ et $V'$ sont isomorphes, on voit que les candidats confondent isomorphisme de $V$ dans $V'$ avec endomorphisme de $V$. Ce qui revient implicitement à identifier $V$ et $V'$ , ce que le candidat devrait faire de façon consciente et éclairée.