(2016 : 107 - Représentations et caractères d'un groupe fini sur un $C$-espace vectoriel.)
Il s’agit d’une leçon où théorie et exemples doivent apparaître. D’une part, il est indispensable de savoir dresser une table de caractères pour des petits groupes, et d’autre part, il faut savoir tirer des informations sur le groupe à partir de sa table de caractères, et être capable de trouver la table de caractères de certains sous-groupes. Les représentations peuvent provenir d’actions de groupes sur des ensembles finis, de groupes d’isométries, d’isomorphismes exceptionnels entre groupes de petit cardinal. Inversement, on peut chercher à interpréter des représentations de façon géométrique, mais il faut avoir conscience qu’une table de caractères provient généralement de représentations complexes à priori non réelles. La présentation du lemme de Schur est importante et ses applications doivent être parfaitement maîtrisées.
S’ils le désirent, les candidats peuvent s’aventurer dans la construction de l’icosaèdre à partir de la table de caractères de $\mathfrak{A}_5$ en utilisant l’indice de Schur (moyenne des caractères sur les carrés des éléments du groupe).