Développement : Optimisation dans un Hilbert

Détails/Enoncé :

Soient $H$ un espace de Hilbert et $J : H \to \mathbb{R}$ convexe, continue et coercive (c'est-à-dire $J(x) \to +\infty$ lorsque $||x|| \to +\infty$). Alors il existe $a \in H$ tel que $J(a) = \inf_H J$.

Autres années :