Leçon 204 * : Connexité. Exemples et applications.

(2018) 204

Dernier rapport du Jury :

(2017 : 204 - Connexité. Exemples et applications.) Le rôle clef de la connexité dans le passage du local au global doit être mis en évidence dans cette leçon : en calcul différentiel, voire pour les fonctions holomorphes. Il est important de présenter des résultats naturels dont la démonstration utilise la connexité. La stabilité par image continue, l’identification des connexes de R sont des résultats incontournables. On distinguera bien connexité et connexité par arcs (avec des exemples compris par le candidat), mais il est pertinent de présenter des situations où ces deux notions coïncident. A contrario, on pourra distinguer leur comportement par passage à l’adhérence. La notion de composantes connexes doit également trouver sa place dans cette leçon (pouvant être illustrée par des exemples matriciels). L’illustration géométrique de la connexité sera un point apprécié par le jury. Des exemples issus d’autres champs (algèbre linéaire notamment) seront valorisés. Le choix des développements doit être pertinent, même s’il fait aussi appel à des thèmes différents ; on peut ainsi suggérer le théorème de Runge.

(2016 : 204 - Connexité. Exemples et applications. ) Le rôle clef de la connexité dans le passage du local au global doit être mis en évidence dans cette leçon : en calcul différentiel, voire pour les fonctions holomorphes. Il est important de présenter des résultats naturels dont la démonstration utilise la connexité. La stabilité par image continue, l’identification des connexes de R sont des résultats incontournables. On distinguera bien connexité et connexité par arcs (avec des exemples compris par le candidat), mais il est pertinent de présenter des situations où ces deux notions coïncident. A contrario, on pourra distinguer leur comportement par passage à l’adhérence. Des exemples issus d’autres champs (algèbre linéaire notamment) seront appréciés. Le choix des développements doit être pertinent, le préambule en fournit quelques exemples, même s’il fait aussi appel à des thèmes différents ; on peut ainsi suggérer le théorème de Runge.
(2015 : 204 - Connexité. Exemples et applications.) Le rôle clef de la connexité dans le passage du local au global doit être mis en évidence dans cette leçon. Il est important de présenter des résultats naturels dont la démonstration utilise la connexité ; par exemple, diverses démonstrations du théorème de d'Alembert-Gauss. On distinguera bien connexité et connexité par arcs, mais il est pertinent de présenter des situations où ces deux notions coïncident.
(2014 : 204 - Connexité. Exemples et applications.) Il est important de présenter des résultats naturels dont la démonstration utilise la connexité ; par exemple, diverses démonstrations du théorème de d'Alembert-Gauss. On distinguera bien connexité et connexité par arcs, mais il est pertinent de présenter des situations où ces deux notions coïncident.

Plans/remarques :

2019 : Leçon 204 - Connexité. Exemples et applications.


2018 : Leçon 204 - Connexité. Exemples et applications.


2017 : Leçon 204 - Connexité. Exemples et applications.


2016 : Leçon 204 - Connexité. Exemples et applications.


Retours d'oraux :

2019 : Leçon 204 - Connexité. Exemples et applications.

  • Leçon choisie :

    204 : Connexité. Exemples et applications.

  • Autre leçon :

    229 : Fonctions monotones. Fonctions convexes. Exemples et applications.

  • Développement choisi : (par le jury)

    Composantes connexes des formes quadratiques réelles

  • Autre(s) développement(s) proposé(s) :

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :
  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement :
    Je n'étais pas très à l'aise pendant le développement, le stress m'empêchait sans doute d'être réellement convaincant.
    J'avais remplacé une inégalité large par une inégalité stricte, une jury m'a demandé de corriger. Ensuite un jury m'a demandé de montrer que ce que j'utilisais dans mon développement était bien une norme ; ce que j'ai du faire en entier malgré la facilité de la vérification. Je pense que c'est à cause de l'image peu assurée que j'ai donné pendant mon développement. J'ai ensuite dû donner la définition d'une forme quadratique.

    Sur le plan :
    - démontrer l'équivalence entre un E = O1 union O2 où O1 et O2 sont des ouverts disjoints et E = F1 union F2 où F1 et F2 sont des fermés disjoints
    - démontrer la caractérisation de la connexité par les fonctions à valeurs dans {0,1}
    - je n'avais pas écrit la condition de continuité dans le théorème des valeurs intermédiaires, j'ai du compléter l'énoncé
    - démontrer le théorème de Darboux : j'avais la démonstration dans mes notes, je leur ai dit, mais la prof qui m'a posé la question m'a demandé ce que je pouvais dire sans regarder ; j'ai donné les grandes lignes sans trop me convaincre, ça a eu l'air de lui suffire et on est passé à autre chose

    Exercice :
    Un seul exercice pour la fin, j'avais une fonction f : R^n -> R^n C1 telle qu'il existe un k >0 tel que pour tout x,y, ||x-y|| < k*||f(x)-f(y)||, et je devais montrer que c'était un C1-difféomorphisme.
    J'ai rapidement pensé au théorème d'inversion globale, j'ai donc dit que je voulais l'utiliser ; j'ai ensuite remarqué que l'hypothèse implique que f est injective ; pour montrer la surjectivité j'ai montré que l'image de f était un ouvert-fermé (fermé par caractérisation séquentielle, ouvert grace au théorème d'inversion locale) ; comme il ne restait pratiquement plus de temps, une des membres du jury m'a demandé les hypothèses du théorème d'inversion globale, et de justifier pourquoi il fallait bien montrer que f était bijective.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Souriant, assez peu aidant, je réfléchissais parfois un peu à voix haute, mais peu d'intervention de leur part ; que ça soit pour me dire que je disais des bêtises ou que je partais bien. Au final, je pense que ça m'a servi, étant donné que j'ai malgré cela pu répondre à toutes leurs questions.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    On a eu un peu moins de 3h de préparation ; quelques minutes de moins.

  • Note obtenue :

    Pas de réponse fournie.