204 CONNEXITÉ. EXEMPLES ET APPLICATIONS.

Soient E et F des espaces topologiques.

I. Espaces et parties connexes

[Gou08, §1.4, p38]

I. A. Notion de connexité

Espace connexe, caractérisation par les parties ouvertes et fermées de E, exemples de $\mathbb R$, d'un intervalle, contre-exemple d'un segment privé d'un point

Parties connexes, contre-exemple de \mathbb{Q} , $\mathbb{R} \setminus \mathbb{Q}$

Image d'un connexe par une application continue

Image d'une partie connexe par une application continue à valeurs dans $\{0,1\}$

Application aux intervalles de \mathbb{R} , \mathbb{R} n'est pas homéomorphe à \mathbb{R}^2

I. B. Propriétés topologiques

[Gou08, §1.4, p46] [FGN07, §2.19, p86]

Suites dans un compact et connexité:

PROPOSITION 1. Soit (E,d) un espace métrique compact et $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ telle que $d(u_n,u_{n+1})\longrightarrow_{n\to+\infty}0$.

Alors l'ensemble Γ des valeurs d'adhérence de $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ est connexe.

APPLICATION 2. [LEMME DE LA GRENOUILLE]

Soit $f:[0,1] \longrightarrow [0,1]$ une fonction continue et $(x_n)_{n \in \mathbb{N}} \in [0,1]^{\mathbb{N}}$ définie par $x_0 \in [0,1]$ et $x_{n+1} = f(x_n)$ pour $n \in \mathbb{N}$.

Alors $(x_n)_{n\in\mathbb{N}}$ converge si et seulement si $\lim_{n\to+\infty} x_{n+1} - x_n = 0$.

Si $A \subset B \subset \overline{A}$ avec A connexe, alors B est connexe

L'adhérence d'une partie connexe est connexe

Une union de connexes d'intersection non vide est connexe

Pour l'intersection, c'est faux \rightarrow contre-exemple sur \mathbb{R}^2

Produit de connexes

I. C. Composantes connexes

Composante connexe, exemples, décomposition de E en composantes connexes \rightarrow dès que l'on a une décomposition en fermés/ouverts connexes disjoints

I. D. Connexité par arcs

Connexité par arcs, qui implique la connexité La réciproque est fausse en général, contre-exemples classiques Segment, connexité par lignes brisées Un convexe est connexe par arcs

Si Ω est ouvert, on a équivalence entre Ω connexe et Ω connexe par lignes brisées

II. Applications en analyse

II. A. Fonctions à valeurs réelles

[Gou08, §1.4, p38] [FGN07, §4.28, p253]

Soit *I* un intervalle réel.

Théorème des valeurs intermédiaires, théorème de DARBOUX

THÉORÈME 3. [THÉORÈME DE SARD]

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction de classe C^1 et C l'ensemble des zéros de f'. Alors f(C) est de mesure nulle.

Si $U \subset E$ connexe est tel que df(a) = 0 pour tout $a \in U$, alors f est constante sur U Connexité d'une boule en toute dimension finie

Théorème de Cauchy-Lipschitz : unicité de la solution maximale

II. B. Analyse complexe

[Tau06, Ch6/7, p67/84] [Rud98, Ch10, p241]

Lemme : un ouvert de $\mathbb C$ est connexe si et seulement si il est connexe par arcs Arcs, chemins, intégrales le long d'un chemin, exemples de $z\longmapsto z, z\longmapsto \overline z, z\longmapsto z^{-1}$ f continue admet une primitive sur Ω si et seulement si pour tout chemin fermé, $\int_\gamma f(z)dz=0$ Formule de CAUCHY 1 sur un connexe : $\int_\gamma f(z)dz=0$

Lemme de l'indice, fonction constante sur chaque composantes connexe, exemple (en annexe) Formule de CAUCHY 2, exemples

COROLLAIRE 4. Une fonction holomorphe est analytique. Plus précisément si $\mathbb{D}(z_0,R)\subset U$ et f est holomorphe sur U alors f est développable en série entière sur $\mathbb{D}(z_0,R)$ et on a pour tout chemin γ d'indice 1 en z_0 :

$$\forall n \in \mathbb{N}, \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2i\pi} \int_{\gamma} \frac{f(s)}{(s-z_0)^{n+1}} ds$$

En particulier f est \mathcal{C}^{∞}

Chemins homotopes, espaces simplement connexes, l'intégrale sur deux chemins homotopes d'une fonction holomorphe entre les deux chemins est la même.

f holomorphe est constante ssi f est nulle sur un voisinage d'un point ssi $f^n(z)=0$ pour tout n pour un $z\in\Omega$

Principe du maximum, application au théorème de d'Alembert-Gauss, principe des zéros isolés, prolongement holomorphe, application à la fonction Γ , aux polynômes orthogonaux

Théorème des résidus, exemples d'intégrales

III. Connexité des espaces de matrices

[Rom17, §21.8/23.2, p682/748] [CG13]

Connexité par arcs donc connexité de $\mathrm{GL}_n(\mathbb{C})$, mais pas de $\mathrm{GL}_n(\mathbb{R})$ qui a deux composantes connexes, tout comme $\mathcal{O}_n(\mathbb{R})$

Connexité de la sphère

Application : isomorphisme des quaternions Connexité de $\mathcal{S}_n(\mathbb{R})$, de $\mathcal{S}_n^+(\mathbb{R})$, de $\mathcal{S}_n^{++}(\mathbb{R})$ Pour $A \in \mathcal{M}_n(\mathbb{C})$, $\exp(\mathbb{C}A)$ est connexe par arcs

ANNEXE

Dessins de composantes connexes, d'ensemble connexes ou non ... Ensembles connexes non connexes par arcs.

QUESTIONS

- Q Soit E un espace vectoriel normé de dimension supérieure ou égale à 2. $S_E = \{x \in E \mid \|x\| = 1\}$ est-il connexe?
- R Soient $x,y\in S_E$. Regardons le chemin $t\longmapsto \frac{ty+(1-t)x}{\|ty+(1-t)x\|}$ lorsque le segment [x,y] ne contient par 0. C'est bien un chemin reliant les deux points dans S_E . Si x=-y alors puisque $\dim(E)\geq 2$ on peut prendre $z\in S_E$ tel que z et x sont libres, et alors on relie par ce qui précède x à z puis z à y.
- Q Soit E un espace vectoriel normé. $A \subset E$ vérifie la propriété du point fixe si toute fonction continue de A dans A admet un point fixe. Étudier le lien entre cette propriété et la connexité.
- R La connexité n'implique pas la propriété. Cependant si la propriété est vraie, l'ensemble est connexe. Raisonnons par contraposée.
 - Si A n'est pas connexe, écrivons $A=O_1\cup O_2$ avec $O1\cap O_2=\varnothing$. Posons $f(O_1)=a_2\in O_2$ et $f(O_2)=a_1\in O_1$: f est continue et n'a pas de point fixe. Donc A ne vérifie pas la propriété.

BIBLIOGRAPHIE

- [CG13] P. CALDERO et J. GERMONI: Histoires hédonistes de groupes et de géométries Tome 1. Calvage et Mounet, 2013.
- [FGN07] S. FRANCINOU, H. GIANELLA et S. NICOLAS: Oraux X-ENS Analyse 1. Cassini, 2007.
- [Gou08] X. GOURDON: Les maths en tête Analyse. Ellipses, 2ème édition, 2008.
- [Rom17] J.-E. Rombaldi : *Mathématiques pour l'agrégation : Algèbre et géométrie*. De Boeck, 2017.
- [Rud98] W. Rudin: Analyse réelle et complexe. Dunod, 2ème édition, 1998.
- [Tau06] P. TAUVEL: Analyse complexe pour la Licence 3. Dunod, 2006.