Leçon 148 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

(2024) 148

Dernier rapport du Jury :

(2023 : 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est indispensable de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Il est en particulier important de savoir justifier pourquoi un sous-espace vectoriel d'un espace vectoriel de dimension finie est aussi de dimension finie. On peut montrer, sur des exemples, comment la dimension finie intervient dans la démonstration de certains résultats (récurrence sur la dimension, égalité de sous-espaces par inclusion et égalité des dimensions, isomorphisme par injectivité et dimension, etc.). À cette occasion, on pourra signaler des résultats qui ne subsistent pas en dimension infinie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses : existence de polynômes annulateurs, dimension de l'espace des formes n-linéaires alternées en dimension n, isomorphisme avec le dual dans le cadre euclidien et théorème de Riesz, espaces de solutions d'équations différentielles ordinaires, caractérisation des endomorphismes diagonalisables, décomposition d'isométries en produits de réflexions, dimensions des représentations irréductibles d'un groupe fini, théorie des corps finis, etc. Les caractérisations du rang peuvent aussi être utilisées pour démontrer l'invariance du rang par extension de corps, ou pour établir des propriétés topologiques (sur R ou C). Pour aller plus loin, les candidates et candidats peuvent déterminer des degrés d'extensions dans la théorie des corps ou s'intéresser aux nombres algébriques. Il est également possible d'explorer des applications en analyse comme les extrémas liés. Dans un autre registre, il est pertinent d'évoquer la méthode des moindres carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l'unicité de la solution et s'orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement analyser l'approximation d'une matrice par une suite de matrices de faible rang.

(2022 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est indispensable de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension nie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d'un espace vectoriel de dimension finie est aussi de dimension finie. On peut montrer, sur des exemples, comment la dimension nie intervient dans la démonstration de certains résultats (récurrence sur la dimension, égalité de sous-espaces par inclusion et égalité des dimensions, isomorphisme par injectivité et dimension, etc.). À cette occasion, on pourra signaler des résultats qui ne subsistent pas en dimension infinie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses : existence de polynômes annulateurs, dimension de l'espace des formes n-linéaires alternées en dimension n, isomorphisme avec le dual dans le cadre euclidien et théorème de Riesz, espaces de solutions d'équations différentielles ordinaires, caractérisation des endomorphismes diagonalisables, décomposition d'isométries en produits de réflexions, dimensions des représentations irréductibles d'un groupe fini, théorie des corps finis, etc. Les caractérisations du rang peuvent aussi être utilisées pour démontrer l'invariance du rang par extension de corps, ou pour établir des propriétés topologiques (sur R ou C). S'ils le désirent, les candidats peuvent déterminer des degrés d'extensions dans la théorie des corps ou s'intéresser aux nombres algébriques. Il est également possible d'explorer des applications en analyse comme les extrémas liés. Dans un autre registre, il est pertinent d'évoquer la méthode des moindres carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l'unicité de la solution et s'orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement analyser l'approximation d'une matrice par une suite de matrices de faible rang.
(2019 : 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est indispensable de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. $\\$ On peut montrer, sur des exemples, comment la dimension finie intervient dans la démonstration de certains résultats (récurrence sur la dimension, égalité de sous-espaces par inclusion et égalité des dimensions, isomorphisme par injectivité et dimension, etc.). À cette occasion, on pourra signaler des résultats qui ne subsistent pas en dimension infinie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses : existence de polynômes annulateurs, dimension de l’espace des formes n-linéaires alternées en dimension n, isomorphisme avec le dual dans le cadre euclidien et théorème de Riesz, espaces de solutions d’équations différentielles ordinaires, caractérisation des endomorphismes diagonalisables, décomposition d’isométries en produits de réflexions, dimensions des représentations irréductibles d’un groupe fini, théorie des corps finis, etc. $\\$ Les caractérisations du rang peuvent aussi être utilisées pour démontrer l’invariance du rang par extension de corps, ou pour établir des propriétés topologiques (sur $\textbf{R}$ ou $\textbf{C}$). S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques. Il est également possible d’explorer des applications en analyse comme les extrémas liés. Dans un autre registre, il est pertinent d’évoquer la méthode des moindres carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l’unicité de la solution et s’orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement analyser l’approximation d’une matrice par une suite de matrices de faible rang.
(2017 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. Le pivot de Gauss ainsi que les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses, on peut par exemple évoquer l’existence de polynômes annulateurs ou alors décomposer les isométries en produits de réflexions. S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques. Dans un autre registre, il est pertinent d’évoquer la méthode des moindre carrés dans cette leçon, par exemple en faisant ressortir la condition de rang maximal pour garantir l’unicité de la solution et s’orienter vers les techniques de décomposition en valeurs singulières pour le cas général. On peut alors naturellement explorer l’approximation d’une matrice par une suite de matrices de faible rang.
(2016 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de présenter les résultats fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier. Il est important de savoir justifier pourquoi un sous-espace vectoriel d’un espace vectoriel de dimension finie est aussi de dimension finie. Les diverses notions et caractérisations du rang trouvent leur place dans cette leçon. Les applications sont nombreuses, on peut par exemple évoquer l’existence de polynômes annulateurs ou alors décomposer les isométries en produits de réflexions. S’ils le désirent, les candidats peuvent déterminer des degrés d’extensions dans la théorie des corps ou s’intéresser aux nombres algébriques.
(2015 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) Dans cette leçon, il est important de bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Ces théorèmes semblent simples car ils ont été très souvent pratiqués, mais leur preuve demande un soin particulier, ce qui rend la leçon plus difficile qu'on ne le croit. Des questions élémentaires comme "un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? " peuvent dérouter un candidat. Les diverses caractérisations du rang trouvent bien leur place ainsi que, pour les candidats plus chevronnés, l'utilisation du degré d'une extension dans la théorie des corps.
(2014 : 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.) C'est une leçon qui, contrairement aux apparences, est devenue difficile pour les candidats. Nombre d'entre eux n'ont pas été capables de donner des réponses satisfaisantes à des questions élémentaires comme : un sous-espace vectoriel d'un espace vectoriel de dimension finie, est-il aussi de dimension finie ? Il faut bien connaître les théorèmes fondateurs de la théorie des espaces vectoriels de dimension finie en ayant une idée de leurs preuves. Les diverses caractérisations du rang doivent être connues.

Développements :

Plans/remarques :

2025 : Leçon 148 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Auteur :
  • Remarque :
    Fichier 1 : Plan réalisé pendant l'année 2023-2024 et non vérifié par une personne compétente.

    Fichier 2 : brouillon/ébauche/méta-plan

    Mon conseil : prenez ce qui vous semble pertinent et surtout faites simple. Pas besoin de faire compliqué pour avoir l'agreg.

    Méta-plan appris pour le jour J. Fait en juin 2024 et non validé par une personne compétente.

    I. Bases et dimension
    1) Familles libres et génératrices
    2) Bases
    3) sev et ev quotient
    II. Dimension et applications linéaires
    1) Applications linéaires et rang
    2) Matrices et rang - méthodes de calcul
    III. Applications et utilisation de la dim finie
    1) Etudes des endomorphismes (DVT : O(q) et DVT: réduction des endo normaux)
    2) Dualité
    3) Classification des formes quadratiques (DVT: Sylvester)
    4) En analyse : eq des normes

  • Fichiers :

2024 : Leçon 148 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Auteur :
  • Remarque :
    Leçon franchement sympa, aux applications variées.

    Les références sont indiquées à la fin du plan. N'hésitez pas à me contacter pour me signaler toute erreur ou imprécision.
  • Fichier :
  • Auteur :
  • Remarque :
    Cette leçon est un vrai plaisir car tout (ou presque) est dans le Grifone !
    Elle était dans mon tirage le jour J mais je ne l'ai pas prise, préférant la 125. J'ai en effet eu peur du fait que comme c'est une leçon considérée comme "facile", le jury attende un niveau de fou dessus... Je pense qu'il faut bien connaître les démos (au moins les idées) de la base extraite, de la base incomplète, du fait que toutes les bases ont même cardinal... De même, il faut savoir justifier qu'un sous-espace vectoriel d'un espace vectoriel de dimension finie est de dimension finie (c'est facile mais avec le stress le jour J on peut oublier l'argument...)
    Concernant les développements, j'ai mis le théorème des extrema liés (+ un lemme d'algèbre linéaire sur la dualité que j'ai oublié d'écrire ici) car cela utilise à de multiples reprises la dimension finie et car c'était un développement que j'avais beaucoup travaillé donc je pouvais le réinvestir le plus possible. Evidemment, on peut trouver des choses plus simples à proposer... Le DEV 2 se justifie par le fait qu'on fait une récurrence sur la dimension. C'est en effet une application très pratique de la dimension finie, on a quelques théorèmes fondamentaux qui se démontrent comme ça (le théorème spectral par exemple...)
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Retrouvez tous nos plans de leçons ainsi que les fichiers latex associés à nos leçons sur notre site : https://sites.google.com/view/tribalchiefandwiseman/home?authuser=0
    Bonne preparation à vous !
  • Auteur :
  • Remarque :
    La plupart des mes plans sont inspirés de Ewna, Agentb0, Jouaucon, Abarrier et Marvin. Merci à eux. Attention aux coquilles ! Mes plans sont, en général, scannés juste après que j'ai finis de rédiger, bien sur quand je les ai relu j'ai trouvé des erreurs. Les références sont à la fin des plans.

    Leçon sur laquelle je suis passé le jour j. Leçon vraiment longue, parce qu'il est important de parler des notions basiques. Je n'ai pas eu le temps de parler de nombres constructibles, j'ai alors fait une partie sur de la réduction pour pouvoir parler de tous les raisonnements par récurrence sur la dimension et j'ai mis le théorème spectral en développement. Et avec du recul je me dis que c'est mieux. J'ai bien sur évoqué à l'oral la constructibilité vu que j'étais à l'aise avec. Je n'ai pas parlé de dualité, mais j'ai beaucoup plus parlé des formes quadratique, enfait j'ai mis en avant les différences de certains résultats sur la dimension en fonction de si on a un produit scalaire ou une forme quadratique.
  • Fichier :

2023 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2020 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...
  • Fichier :

2019 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2018 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2017 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2016 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


2015 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.


Retours d'oraux :

2023 : Leçon 151 - Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Leçon choisie :

    151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Autre leçon :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications

  • Développement choisi : (par le jury)

    Invariants de similitude (réduction de Frobenius)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Mon développement consistait des lemmes préliminaires puis l'existence seulement. Ils m'ont posé quelques précisions sur ce que j'avais fait, puis m'ont posé les questions suivantes :
    - Si d est le degré du polynôme minimal de u, pourquoi (id_E, u,..., u^{d-1}) est une base de K[u] ?
    - Si F est un SEV stable par u, pourquoi le polynôme minimal de l'endomorphisme induit divise le polynôme minimal de u ?
    - Exemple sur une matrice 2x2

    Sur le plan :
    - Comment définit-on le polynôme minimal ?
    - Est-ce-que des SEV E_1,...,E_r sont en somme directe si et seulement si leur intersection deux à deux est nulle ?
    - Pourquoi l'ensemble des matrices de rang inférieur ou égal à r est un fermé ?
    - Que se passe-t-il pour les matrices de rang égal à r avec r - Questions sur les matrices compagnon (dimension d'un sous-espace propre associé, CNS de diagonalisabilité)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury composé de deux hommes et une femme, ils étaient neutres, pas très encourageants, pas un seul sourire à part à la fin

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Questions très élémentaires, à part la question sur les SEV en somme directe j'ai répondu directement et justement, je ne sais pas pourquoi ils n'ont pas cherché à poser des questions plus "dures", j'ai l'impression que ça a un peu plafonné la note

  • Note obtenue :

    14.5

  • Leçon choisie :

    151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Autre leçon :

    144 : Racines d’un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

  • Développement choisi : (par le jury)

    Dimension du commutant

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Sur le développement :
    Mon développement était bien rendu (il est assez simple), une femme du jury m'a posé des questions simples auxquelles j'ai donné des réponses un peu vaseuses. finalement on a réussi à se comprendre.

    Questions :
    Ma leçon comportait beaucoup de thèmes différents : Corps finis, extrema liés, réduction des endomorphismes normaux & nilpotents, etc. Pendant l'année j'étais passé en oral blanc sur cette leçon et j'avais eu quasi-exclusivement des questions sur les corps finis. Le jour J j'ai eu quasi-exclusivement des questions sur la réduction et les algèbres de polynômes :

    Quelle est la dimension de K[u] ? (c'est une algèbre quotient de dim le degré du pol minimal)

    Montrer que si P(u) = 0 et P(0) != 0, u est inversible dans K[u]
    J'ai bien galéré, il est bien de dire que les inversibles de K[u] sont les polynômes premiers à pi (le pol minimal de u) par le théorème de Bézout. Je le savais mais il me manquait un truc, alors j'ai fait à la main et ça a pris du temps. Au final, si P(u) = 0, pi divise P, donc X ne divise pas pi, donc X est premier à pi, donc u est inversible dans K[u]...
    C'est quasiment le premier exo dans Gourdon d'algèbre.

    - Une question où il fallait utiliser les projecteurs spectraux (ceux qui sont dans le lemme des noyaux). Par réflexe je redémontre le lemme des noyaux (je suis conditionné), ils me demande ce que je fais, pourquoi ne pas juste utiliser les résultats ...

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury avait l'air agréablement surpris par ce que je racontais. Par ailleurs celui qui menait était vraiment sympathique.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai eu une note bien plus haute qu'attendu. Je crois que le jury aime bien cette leçon, bien faite.

  • Note obtenue :

    19


2022 : Leçon 151 - Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Leçon choisie :

    151 : Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Autre leçon :

    102 : Groupe des nombres complexes de module 1 . Sous-groupes des racines de l'unité. Applications.

  • Développement choisi : (par le jury)

    Dimension du commutant

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques questions sur le développement pour commencer, notamment pour justifier l'invariance du rang/de la dimension de l'espace des solutions par extension de corps. Quelques questions sur le plan pas très difficiles.

    Premier exo: soit $f: \mathcal{M}_n(\mathbf{R}) \rightarrow \mathbf{R}$ multiplicative et telle que $f(0)=0$ et $f(I_n)=1$. Montrer que $A$ est inversible si et seulement si $f(A) \neq 0$.
    Deuxième exo: si $E$ est un $\mathbf{R}-$ev de dimension $n$ et $F$ un sev de $E$, que dire de la dimension de $\{ u \in \mathcal{L}(E) : F \subset Ker(u) \}$ ?

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury très sympathique, ils m'ont mis très à l'aise et j'ai senti qu'ils m'ont tiré vers le haut en dynamisant beaucoup l'échange.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Pas de réponse fournie.

  • Note obtenue :

    Pas de réponse fournie.


Références utilisées dans les versions de cette leçon :

Algèbre linéaire , Grifone (utilisée dans 96 versions au total)
Algèbre , Gourdon (utilisée dans 311 versions au total)
Cours d'algèbre , Perrin (utilisée dans 400 versions au total)
Algèbre : le grand combat: Cours et exercices, Grégory Berhuy (utilisée dans 104 versions au total)
Mathématiques Tout-en-un pour la Licence 2, Jean-Pierre Ramis, André Warusfel (utilisée dans 37 versions au total)
Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 457 versions au total)
Oraux X-ENS Algèbre 1, Francinou, Gianella, Nicolas (utilisée dans 139 versions au total)
Objectif Agrégation, Beck, Malick, Peyré (utilisée dans 275 versions au total)
Analyse , Gourdon (utilisée dans 567 versions au total)
Algèbre et probabilités, Gourdon (utilisée dans 76 versions au total)
Tout-en-un MPSI, Claude Deschamps (utilisée dans 23 versions au total)
Carnet de voyage en Algébrie, Philippe Caldero, Marie Peronnier (utilisée dans 107 versions au total)
Tout-en-un MP/MP*, Claude Deschamps (utilisée dans 40 versions au total)
Topologie générale et espaces normés , Hage Hassan (utilisée dans 42 versions au total)
Théorie de Galois , Gozart (utilisée dans 7 versions au total)
Algèbre linéaire réduction des endomorphismes, R. Mansuy, R. Mneimné (utilisée dans 51 versions au total)
Un max de maths , Zavidovique (utilisée dans 50 versions au total)
Géométrie analytique classique , Eiden (utilisée dans 16 versions au total)
L'oral à l'agrégation de mathématiques - Une sélection de développements , Isenmann, Pecatte (utilisée dans 141 versions au total)
Algèbre linéaire , Cognet (utilisée dans 9 versions au total)
Extension de Corps - Théorie de Galois, Josette Calais (utilisée dans 6 versions au total)
Théorie de Galois, Gozard (utilisée dans 34 versions au total)
Théorie des corps , Carréga (utilisée dans 23 versions au total)
Oraux X-ENS Algèbre 2 , Francinou, Gianella, Nicolas (utilisée dans 69 versions au total)