Leçon 170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.

(2024) 170

Dernier rapport du Jury :

(2022 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.) L'intitulé implique implicitement que le candidat ne doit pas se contenter de travailler sur R. On peut par exemple adopter le point de vue de l'action par congruence du groupe linéaire sur l'espace des matrices symétriques, ce qui permet de dégager quelques invariants (rang, discriminant), de s'interroger sur le nombre et la structure des orbites, L'algorithme de Gauss doit être énoncé et pouvoir être mis en oeuvre sur une forme quadratique simple. En ajoût de la a classification sur R, le candidat pourra parler de la classification des formes quadratiques sur le corps des complexes. Il est aussi possible de s'intéresser à la classification sur les corps finis. On peut s'intéresser au groupe orthogonal (générateurs, structure du groupe quand l'espace est de dimension 2). Le lien avec la dualité des espaces vectoriels permet de comprendre le sens de la décomposition de Gauss et de comparer les notions de sous-espace orthogonal, en s'interrogeant sur les conditions pour que que l'orthogonal d'un sous-espace vectoriel en soit un supplémentaire. Les notions d'isotropie et de cône isotrope doivent être connues. On pourra rattacher cette notion à la géométrie différentielle. Pour aller plus loin, l'étude de la géométrie d'un espace vectoriel muni d'une forme quadratique de signature (p,q) peut-être envidagée, notamment la structure du cône de lumière de l'espace-temps de Minkowski, avec la traduction géométrique de la notion d'orthogonal dans ce cas et des propriétés du groupe O(p,q).

(2019 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.) L’intitulé implique implicitement que le candidat ne doit pas se contenter de travailler sur $\textbf{R}$. Le candidat pourra parler de la classification des formes quadratiques sur le corps des complexes et sur les corps finis. L’algorithme de Gauss doit être énoncé et pouvoir être mis en œuvre sur une forme quadratique simple. $\\$ Les notions d’isotropie et de cône isotrope sont un aspect important de cette leçon. On pourra rattacher cette notion à la géométrie différentielle.
(2017 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.) Il faut tout d’abord noter que l’intitulé implique implicitement que le candidat ne doit pas se contenter de travailler sur R. Le candidat pourra parler de la classification des formes quadratiques sur le corps des complexes et sur les corps finis. L’algorithme de Gauss doit être énoncé et pouvoir être mis en œuvre sur une forme quadratique simple. Les notions d’isotropie et de cône isotrope sont un aspect important de cette leçon. On pourra rattacher cette notion à la géométrie différentielle.
(2016 : 170 - Formes quadratiques sur un espace vectoriel de dimension nie. Orthogonalité, isotropie. Applications.) Il faut tout d’abord noter que l’intitulé implique implicitement que le candidat ne doit pas se contenter de travailler sur R. Le candidat pourra parler de la classification des formes quadratiques sur le corps des complexes et sur les corps finis. L’algorithme de Gauss doit être énoncé et pouvoir être pratiqué sur une forme quadratique simple. Les notions d’isotropie et de cône isotrope sont un aspect important de cette leçon. On pourra rattacher cette notion à la géométrie différentielle.
(2015 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.) Il faut tout d'abord noter que l'intitulé implique implicitement que le candidat ne doit pas se contenter de travailler sur R . Il faut savoir que les formes quadratiques existent sur le corps des complexes et sur les corps finis et il faut savoir les classifier. On ne doit pas oublier l'interprétation géométrique des notions introduites (lien entre coniques, formes quadratiques, cônes isotropes) ou les aspects élémentaires (par exemple le discriminant de l'équation $ax^2 + bx + cy^2 = 0$ et la signature de la forme quadratique $ax^2 + bxy + cy^2$ ). On ne peut se limiter à des considérations élémentaires d'algèbre linéaire. Les formes quadratiques ne sont pas toutes non dégénérées (la notion de quotient est utile pour s'y ramener). L'algorithme de Gauss doit être énoncé et pouvoir être pratiqué sur une forme quadratique de lien avec la signature doit être clairement énoncé. Malheureusement la notion d'isotropie est mal maîtrisée par les candidats, y compris les meilleurs d'entre eux. Le cône isotrope est un aspect important de cette leçon, qu'il faut rattacher à la géométrie différentielle. Il est important d'illustrer cette leçon d'exemples naturels.
(2014 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.) Le candidat ne doit pas se contenter de travailler sur $R$. Il faut savoir que les formes quadratiques existent sur le corps des complexes et sur les corps finis et savoir les classifier. On ne doit pas négliger l'interprétation géométrique des notions introduites (lien entre coniques, formes quadratiques, cônes isotropes) ou les aspects élémentaires (par exemple le discriminant de l'équation $ax^2 + bx + c = 0$ et la signature de la forme quadratique $ax^2 + bxy + cy^2$). On ne peut se limiter à des considérations élémentaires d'algèbre linéaire. Les formes quadratiques ne sont pas toutes non dégénérées (la notion de quotient est utile pour s'y ramener). L'algorithme de Gauss doit être énoncé et pouvoir être pratiqué sur une forme quadratique de $R^3$ . Le lien avec la signature doit être clairement énoncé. Malheureusement la notion d'isotropie est mal maîtrisée par les candidats, y compris les meilleurs d'entre eux. Le cône isotrope est un aspect important de cette leçon, qu'il faut rattacher à la géométrie différentielle. Il est important d'illustrer cette leçon d'exemples naturels.

Plans/remarques :

2025 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.

  • Auteur :
  • Remarque :
    Méta-plan appris pour le jour J. Fait en juin 2024 et non validé par une personne compétente.

    I. Formes quadratiques
    1) Formes bilinéaires, quadratiques
    2) Matrices
    3) Noyau et rang
    II. Orthogonalité
    1) Généralité, isotropie
    2) Bases et sommes q-ortho
    3) Isométrie et O(q) (DVT : générateurs isométrie)
    III. Réduction et classification
    1) Lien avec la dualité et réduction de Gauss
    2) Classification sur R, loi de Sylvster (DVT : loi de Sylvester)



2024 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité. Applications.

  • Auteur :
  • Remarque :
    Je suis restée dans les notions classiques car je n'ai pas le niveau d'explorer des horizons trop compliqués, j'espère que ça vous aidera à avoir une idée de ce qui peut être fait.
    Mes plans ne sont pas vérifiées donc il faut garder un regard critique sur ces derniers. En les révisant j'ai trouvé beaucoup de coquilles et fautes de frappes, j'ai essayé d'en corriger un maximum mais il est évident qu'il en reste encore, désolée pour cela.

    Les remarques en rose ne font pas partie du plan, c'était des remarques pour quand je les réviserai.

    Bon courage pour votre préparation !
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Il me semble nécessaire de ne pas se cantonner au corps des réels pour différencier cette leçon de celle sur les formes quadratiques réelles.

    Les références sont indiquées à la fin du plan. N'hésitez pas à me contacter pour me signaler toute erreur ou imprécision.
  • Fichier :
  • Auteur :
  • Remarque :
    Cette leçon m'a demandé beaucoup de travail car je connaissais très peu les formes quadratiques avant de rentrer en prépa agreg : ça vaut le coup de les travailler pour prendre du recul sur plein de choses, et surtout parce que mine de rien ce n'est pas marginal au programme de l'agreg (ça peut tomber aux écrits !)
    Les résultats marqués d'un cœur sont ceux que je rajoutais "par cœur" car introuvables dans les références...
    Pour Sylvester, je définis les choses dans un certain ordre qui n'est pas celui des livres mais qui est celui du cours sur lequel je me suis basé pour travailler les formes quadratiques.
    Ce n'est pas du tout obligatoire de parler du groupe orthogonal pour une forme quadratique, d'ailleurs si j'étais tombé sur cette leçon le jour J et que je l'avais choisie, je n'en aurais pas parlé.
    Il est indispensable de savoir mettre en œuvre la méthode de Gauss en pratique pour décomposer en carrés !

    Au besoin, j'ai un poly de cours sur les formes quadratiques qui est plutôt bien fait, n'hésitez pas à me contacter pour que je vous l'envoie.
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    Retrouvez tous nos plans de leçons ainsi que les fichiers latex associés à nos leçons sur notre site : https://sites.google.com/view/tribalchiefandwiseman/home?authuser=0
    Bonne preparation à vous !
  • Auteur :
  • Remarque :
    La plupart des mes plans sont inspirés de Ewna, Agentb0, Jouaucon, Abarrier et Marvin. Merci à eux. Attention aux coquilles ! Mes plans sont, en général, scannés juste après que j'ai finis de rédiger, bien sur quand je les ai relu j'ai trouvé des erreurs. Les références sont à la fin des plans.

    Plan semi détaillé.

    Bon, je ne savais pas trop quoi mettre en second développement j'ai alors mis par 5 points passe une conique etc. Si vous ne faites pas ce développement alors virez le III. Sinon je le fait passer en application mais bon c'est pas foufou. D'ailleurs faites attention à la définition d'une conique non dégénéré et conique propre en fonction des livres c'est pas tout à fait pareil (ca dépend de si on regarde la forme quadratique homogène ou la partie quadratique de la conique...). Enfin bref les conique c'est un domaine que j'apprécie pas forcément.

    Sinon concernant le reste de la leçon je la trouve sympa, il me paraît essentiel de savoir appliquer la méthode de Gauss.
  • Fichier :

2023 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications

  • Auteur :
  • Remarque :
    Possibilité d'avoir ma version complète manuscrite en me contactant par mail.
  • Fichier :

2022 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.


2020 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Auteur :
  • Remarque :
    Toutes les références sont à la fin du plan.

    Mes excuses pour l'écriture, et attention aux coquilles...

    Petit conseil de la part d'un de mes préparateurs à l'agreg et ancien membre du jury (personne formidable s'il en est), c'est la leçon où il a vu les pires prestations. L'isotropie n'est pas simple à maîtriser et beaucoup se sont cassés les dents dessus.
  • Fichier :

2019 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.


2018 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.


2017 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.


2016 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension nie. Orthogonalité, isotropie. Applications.


2015 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.


Retours d'oraux :

2019 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    162 : Systèmes d'équations linéaires ; opérations élémentaires, aspects algorithmiques et conséquences théoriques.

  • Développement choisi : (par le jury)

    Théorème spectral

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Beaucoup de questions sur le développement issue du Gourdon, Algèbre, puis sur des démonstrations de théorèmes du plan.
    Question sur la différence entre la définition d'ellipses du Rombaldi et du Bernis puis le jury a demandé de tracer quelques exemples d'ellipses dans le plan.
    Question sur les formes quadratiques définies, dégénérées à l'aide d'un exercice puis sur la réduction de Gauss de xy + yz + zx et questions sur le critère de Sylvester.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury a été bienveillant

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Préparation difficile dû à une chaleur élevé dans les salles de préparation
    La préparation est raccourcie de 5 min pour aller chercher les livres.

  • Note obtenue :

    7.75

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    151 : Dimension d’un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.

  • Développement choisi : (par le jury)

    Etude de O(p,q)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Quelques remarques / questions sur mon développement, pour aller un peu plus loin. Je l'avais conclu par une remarque sur un résultat topologique qui en découlait, ils m'ont aiguillé dessus. Ensuite quelques questions sur le théorème de réduction des endomorphismes orthogonaux, arrivé par les questions précédentes justement. Ensuite un exercice traitant d'isotropie d'une forme quadratique, pas très dur et assez court mais comme c'est un thème que je n'avais pas beaucoup travaillé, j'ai bégayé et n'ai fini par y parvenir qu'après 10 minutes et l'aide du jury.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était plutôt bienveillant, pas avec un grand sourire non plus, mais pas cassant du tout. Cependant, sur les 3 membres, seul l'homme maintenait la discussion (les deux autres étaient des femmes qui ne m'ont posé qu'une seule question chacune, et n'ont plus décroché un mot ensuite...), je suppose que le sujet ne devait pas trop les brancher...

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Globalement oui. il faut juste bien avoir conscience que la préparation ne dure pas 3h exactement mais 2h40. Dans les faits ce n'est pas gênant, mais mieux vaut ne pas l'apprendre le jour J. Après, ça se déroule vraiment comme un oral blanc, du moins c'est ce que j'ai ressenti.

  • Note obtenue :

    13


2018 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    105 : Groupe des permutations d’un ensemble fini. Applications.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    La défense de plan, ainsi que la présentation du développement se sont bien passés. Mais j'ai fait une erreur dans la présentation qu'ils m'ont fait corriger après et cela a bien duré 5 bonnes minutes. J'enchainais petites erreurs sur petites erreurs. La partie Questions commençait mal. J'ai pu me rattraper par la suite avec les autres questions et exercices. Voici ceux dont je me rappelle :
    -Donner la signature de la forme quadratique $A \rightarrow Tr(A^2)$ ( Résultat qui était dans mon plan et que j'ai signalé. On est donc passés à un autre exercice.)
    -Soit q une forme quadratique sur E un K-ev et u un vecteur de E. Donner une condition nécessaire et suffisante pour que u puisse être compléter en une base orthogonale pour q. ( Ils m'ont laissé le temps de la réflexion au tableau, ce qui m'a permis de proposer des pistes et finalement résoudre l'exercice sans aide)
    -Il s'agissait dans cet autre exercice de montrer qu'un espace quadratique se décompose comme somme d'espaces hyperboliques et d'un espace sans vecteur isotrope. Ils m'ont dit de raisonner par récurrence, ce qui m'a permis de faire l'exercice.
    Des questions sur le plan étaient posées entre les exercices, notamment "Comment définissez-vous le discriminant d'une forme quadratique dégénérée ? " (La définition était pourtant dans le plan) ou encore des questions sur les carrés dans Fp.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le jury était plutôt sec voire agacé lorsque je faisais mes petites erreurs après la présentation de mon développement. Ils étaient nettement plus sympas lors de la partie exercices et le plus agacé des trois a même fini par sourire ! L'un des trois jurys ne parlait pas du tout et se contentait d'écrire des trucs.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Aucune surprise durant l'oral.

  • Note obtenue :

    18


2016 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension nie. Orthogonalité, isotropie. Applications.

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension nie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    121 : Nombres premiers. Applications.

  • Développement choisi : (par le jury)

    Ellipsoïde de John Loewner

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Beaucoup de questions sur mon développement, effectivement il y avait des petites chose qui était pas hyper précises et auxquelles je n'avais pas fait attention (par exemple lorsqu'on montre qu'un certain ensemble de formes quadratiques est compact, pour montrer la fermeture on utilise la caractérisation séquentielle, et ils ont beaucoup insisté pour préciser dans quel espace ça converge, pour quelle norme, etc...), mais j'ai aussi l'impression qu'ils ont pas écouté grand chose à ce que j'ai raconté pendant 15mn.

    Ensuite autant de questions sur mon plan, un des membres du jury m'a dit qu'il le trouvait pas rigoureux parce que je me place au début dans un espace vectoriel sur un corps $K$ quelconque, et ensuite je passait allègrement de $K$ à $\mathbb{R}$ et inversement sans forcément le préciser dans le plan, donc il m'a fait reprendre une par une les propositions en me demandant pour quel corps c'était vrai, et sinon qu'est ce qu'il se passait, etc..

    Exercices :
    -Déterminer la signature de $q(x,y)=x^2+y^2+xy$ (ils m'ont beaucoup embêté sur le changement de base que je faisais, j'ai pas trop compris ce qu'ils attendaient)
    -Soit $q:M_n(\mathbb{R})\rightarrow \mathbb{R}, M\mapsto tr(M^2)$ Montrer que c'est une forme quadratique et calculer sa signature (indice : considérer la restriction à $S_n(R)$)

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Le membre du jury précédemment cité était assez cassant, il enchaînait les questions très vite, coupait la parole aussi bien à moi qu'aux autres membres du jury. Les autres n'ont pas dit grand chose, à part un qui m'a donné des exercices à la fin.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Ça s'est passé comme je l'imaginais, le jury était un petit peu agressif mais il y en avait toujours un pour calmer le jeu.

  • Note obtenue :

    Pas de réponse fournie.


2015 : Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    155 : Endomorphismes diagonalisables en dimension finie.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    sous quelles conditions sur la forme quadratique q a-t-on l'égalité en F et son double orthogonal (pour la forme q) ?

    on considère la forme quadratique réelle qui a une matrice A associe Tr(A^2). Est elle dégénérée ? quel est son cône nilpotent ? (j'ai donné des exemples qui montraient qu'il n'était pas vide, mais je n'ai pas su le caractériser, le jury a vite abandonné cette question). quelle est sa signature ? (je n'ai traité que la dimension 2, puis j'ai dit que ça se généralisait mais le jury m'a directement mis sur une autre question).

    Puis : comment enseigneriez-vous cette matière à des élèves de niveau L2 ? et comment l'exposeriez vous à un public non spécialiste, par exemples des physiciens ? J'ai répondu qu'il fallait insister sur la représentation polynomiale, l'interprétation géométrique avec les coniques, le jury a eu l'air d'approuver.

  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    jury qui ne donne pas d'indices mais qui est assez réactif aux propositions

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    J'ai eu une hésitation dans mon développement, parce que j'ai écrit de manière trop dégueulasse et qu'un a s'est transformé en q, mais j'ai su me rattraper.. le jury avait du mal à comprendre le développement, j'ai du réexpliquer plusieurs points qui étaient pourtant assez simples. L'un des 3 membres a été complètement muet, les autres n'avaient pas l'air de se sentir très concernés par le sujet..

  • Note obtenue :

    15

  • Leçon choisie :

    170 : Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.

  • Autre leçon :

    156 : Exponentielle de matrices. Applications.

  • Développement choisi : (par le jury)

    Loi de réciprocité quadratique (via les formes quadratiques)

  • Autre(s) développement(s) proposé(s):

    Pas de réponse fournie.

  • Liste des références utilisées pour le plan :

    Pas de réponse fournie.

  • Résumé de l'échange avec le jury (questions/réponses/remarques) :

    Des exercices et des questions sur le plan : il y avait 5 résultats dans mon plan qui étaient des dl classiques ils m'ont demandé de donner les idées de démos des 3 que je n'ai pas proposés (lemme de morse, réduction des formes quadratiques sur un corps fini et ss-groupes compacts de Gln).

    - Montrer que l'ensemble des classes de congruence des matrices symétriques est fini ssi K*/K*^2 est fini
    - Montrer que l'ensemble des formes quadratiques de signature p,q est un ouvert
    - Est ce que vous connaissez un résultat général sur la réduction de formes quadratiques ? (ils voulaient le théorème de Witt que je ne connaissais que de nom)
    - Montrer que O(q) est un groupe. Dans le cas réel, quand ce groupe est-il compact ?


  • Quelle a été l'attitude du jury (muet/aide/cassant) ?

    Jury vraiment sympa qui s'excuse quand il pose une question un peu bête, qui acquiesce dès que je pars dans la bonne direction et qui aide quand je bloque. L'oral était principalement guidé par Tosel.

  • L'oral s'est-il passé comme vous l'imaginiez ou avez-vous été surpris par certains points ? Cette question concerne aussi la préparation.

    Un oral qui ressemblait plus que d'habitude à notre préparation, des résultats du plan à démontrer ou expliquer.

  • Note obtenue :

    18


Références utilisées dans les versions de cette leçon :

Mathématiques pour l'agrégation: Algèbre et géométrie, Jean Etienne Rombaldi (utilisée dans 457 versions au total)
Petit guide de calcul différentiel , Rouvière (utilisée dans 210 versions au total)
Algèbre , Gourdon (utilisée dans 311 versions au total)
Cours d'algèbre , Perrin (utilisée dans 400 versions au total)
Algèbre linéaire , Grifone (utilisée dans 96 versions au total)
Nouvelles histoires hédonistes de groupes et géométries, P. Caldero, J. Germoni (utilisée dans 52 versions au total)
Analyse , Gourdon (utilisée dans 567 versions au total)
Histoires hédonistes de groupes et géométries, Tome 1, Caldero, Germoni (utilisée dans 118 versions au total)
Invitation aux formes quadratiques , Seguin (utilisée dans 5 versions au total)
Oraux X-ENS Algèbre 3 , Francinou, Gianella, Nicolas (utilisée dans 72 versions au total)
Algèbre Géométrique, Artin (utilisée dans 2 versions au total)
Cours d'arithmétique , Serre (utilisée dans 12 versions au total)
Quadratic and Hermitian Forms, Scharlau (utilisée dans 1 versions au total)