(2014 : 170 - Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications.)
Le candidat ne doit pas se contenter de travailler sur $R$. Il faut savoir que les formes quadratiques existent sur le corps des complexes et sur les corps finis et savoir les classifier. On ne doit pas négliger l'interprétation géométrique des notions introduites (lien entre coniques, formes quadratiques, cônes isotropes) ou les aspects élémentaires (par exemple le discriminant de l'équation $ax^2 + bx + c = 0$ et la signature de la forme quadratique $ax^2 + bxy + cy^2$). On ne peut se limiter à des considérations élémentaires d'algèbre linéaire. Les formes quadratiques ne sont pas toutes non dégénérées (la notion de quotient est utile pour s'y ramener).
L'algorithme de Gauss doit être énoncé et pouvoir être pratiqué sur une forme quadratique de $R^3$ . Le lien avec la signature doit être clairement énoncé. Malheureusement la notion d'isotropie est mal maîtrisée par les candidats, y compris les meilleurs d'entre eux. Le cône isotrope est un aspect important de cette leçon, qu'il faut rattacher à la géométrie différentielle. Il est important d'illustrer cette leçon d'exemples naturels.