(2019 : 221 - Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.)
Le jury attend d’un candidat qu’il sache déterminer rigoureusement la dimension de l’espace vectoriel des solutions. Le cas des systèmes à coefficients constants fait appel à la réduction des matrices qui doit être connue et pratiquée. Le jury attend qu’un candidat puisse mettre en œuvre la méthode de variation des constantes pour résoudre une équation différentielle linéaire d’ordre 2 simple (à coefficients constants par exemple) avec second membre ; un trop grand nombre de candidats se trouve déstabilisé par ces questions. $\\$ L’utilisation des exponentielles de matrices a toute sa place ici et doit être maîtrisée. Les problématiques de stabilité des solutions et le lien avec l’analyse spectrale devraient être davantage exploités dans cette leçon. Le théorème de Cauchy-Lipschitz linéaire constitue un exemple de développement pertinent pour cette leçon. Les résultats autour du comportement des solutions, ou de leurs zéros, de certaines équations linéaires d’ordre 2 (Sturm, Hill-Mathieu,...) sont aussi d’autres possibilités. $\\$ Pour aller plus loin, la résolution au sens des distributions d’équations du type $T'+aT=S$ via la méthode de variation de la constante, ou des situations plus ambitieuses, trouvera sa place dans cette leçon.