(2019 : 108 - Exemples de parties génératrices d’un groupe. Applications.)
Il est indispensable de donner des parties génératrices pour tous les exemples proposés. La description ensembliste du groupe engendré par une partie doit être connue et les groupes monogènes et cycliques doivent être évoqués. C’est une leçon qui doit être illustrée par des exemples très variés. Les groupes $Z/nZ$ fournissent des exemples naturels tout comme les groupes de permutations, les groupes linéaires ou leurs sous-groupes (par exemple $SL_n(K)$, $O_n(R)$ ou $SO_n(R)$). Ainsi, on peut s’attarder sur l’étude du groupe des permutations avec différents types de parties génératrices en discutant de leur intérêt (ordre, simplicité de A5 par exemple). On peut présenter le groupe $GL(E)$ généré par des transvections et des dilatations en lien avec le pivot de Gauss, le calcul de l’inverse ou du rang (par action sur $M_{n,p}(K)$), le groupe des isométries d’un triangle équilatéral qui réalise S3 par identifications des générateurs. Éventuellement, il est possible de discuter des conditions nécessaires et suffisantes pour que $(Z/nZ)^*$ soit cyclique ou la détermination de générateurs du groupe diédral.
On n’hésitera pas à illustrer comment la connaissance de parties génératrices s’avère très utile dans l’analyse des morphismes de groupes ou pour montrer la connexité par arcs de certains sous-groupes de $GL_n(R)$ par exemple.
S’il le souhaite, le candidat peut s’intéresser à la présentation de certains groupes par générateurs et relations. Pour aller plus loin, il est également possible de parler du logarithme discret et de ces applications à la cryptographie (algorithme de Diffie-Hellman, cryptosystème de El Gamal).
108 : Exemples de parties génératrices d’un groupe. Applications.
Pas de réponse fournie.
Pas de réponse fournie.
Le jury a commencé par revenir sur le développement. Ils m'ont demandé de justifier que $\mathfrak S_n$ était engendré par les $(1\, i)$, je n'attendais pas cette question et j'ai eu un peu de mal à le faire (j'ai pris le cas de $\mathfrak S_3$ pour ensuite faire le cas général). Puis le jury m'a demandé de réexpliquer un point du développement sur lequel je suis passé un peu rapidement. Ils m'ont ensuite demandé qu'elle était la plus petite partie génératrice de $\mathfrak S_n$ (la réponse était dans mon plan) puis quelle était le nombre minimal de transpositions nécessaires pour engendrer $\mathfrak S_n$ (j'ai eu l'intuition du résultat, le jury a confirmé que c'était une bonne idée et j'ai trouvé la preuve rapidement).
Ensuite, ils sont passés aux questions sur le plan. Ils m'ont demandé comment je faisais pour prouver que le groupe multiplicatif d'un corps fini était cyclique, à partir de la formule $n=\sum_{d\mid n} \varphi(d)$. Je me souvenais du plan de la preuve, mais je ne me souvenais plus vraiment d'un point, le jury m'a donné une indication et ça m'est revenu. Puis ils m'ont demandé si le caractère fini du corps était nécessaire (non). Ils m'ont demandé quelle topologie je mettais sur les espaces de matrices et ils m'ont demandé quelles étaient les propriétés topologiques de $\mathrm{SO}_n(\mathbb R)$ (j'avais mis dans le plan qu'il était connexe par arcs, mais je n'avais pas dit qu'il était compact). Ils m'ont demandé de prouver que $\mathrm{GL}_n(K)$ était engendré par les transvections et les dilatations (à partir du fait que $\mathrm{SL}_n(K)$ est engendré par les transvections). J'ai mentionné l'algorithme du pivot de Gauss lors de la présentation du plan, le jury m'a donc demandé à quoi servait cet algorithme et quelle était son efficacité.
Comme je parlais de la fonction indicatrice d'Euler dans le plan, ils m'ont demandé si je connaissais une formule pour $\varphi(n)$. J'ai dit que oui, en utilisant la multiplicativité de la fonction. Ils m'ont alors demandé de prouver la multiplicativité. J'ai répondu qu'on pouvais le prouver avec le théorème chinois, ils m'ont alors demandé comment je construisais le morphisme de $\mathbb Z/pq\mathbb Z$ dans $\mathbb Z/p\mathbb Z \times \mathbb Z/q\mathbb Z$. J'ai posé l'application dans le bon sens, donc ça a été. J'ai dit une petite bêtise : je me suis fait la réflexion que ce que je faisais jusque là fonctionnerait sans supposer $p$ et $q$ premiers entre eux. Le jury m'a demandé si j'étais sûr de ça, j'ai dit que j'allais vérifier et je me suis rendu compte de mon erreur. Ils m'ont alors demandé ce qui se passait dans le cas où $p$ et $q$ ne sont pas premiers entre eux. J'ai répondu qu'il fallait alors considérer $\mathrm{PPCM}(p,q)$. Ils m'ont ensuite demandé comment inverser ce morphisme, j'ai répondu par l'algorithme d'Euclide étendu et le jury est passé à la suite.
Le jury m'a demandé si je connaissais un système de générateurs de $\mathrm{SL}_2(\mathbb Z)$. J'ai tenté une première réponse (fausse). Comme je ne connaissais pas la réponse, le jury m'a donnée deux matrices puis m'a demandé de montrer que les deux matrices étaient génératrices. J'ai essayé d'adapter la preuve du cas $\mathrm{SL}_n(K)$, mais ce n'était pas vraiment ça. Le jury m'a beaucoup guidé et après plusieurs minutes, j'ai fini par réussir. J'avais parlé du groupe dérivé de $\mathfrak S_n$ dans le plan, le jury m'a demandé de définir ce que c'était en général et quelles étaient ses propriétés. Enfin le jury m'a demandé comment faire pour déterminer un générateur de $(\mathbb Z/p\mathbb Z)^*$. J'ai répondu que je ne connaissais pas de méthodes autres que d'essayer. Le jury m'a demandé alors de le faire pour $p=17$, j'ai commencé à essayer avec 2. Le jury m'a alors fait différentes remarques, j'ai senti qu'ils essayaient de me faire comprendre quelque chose mais il n'y avait plus de temps et ça s'est arrêté là.
Pas de réponse fournie.
La préparation.
Je suis passé sur une leçon que j'aimais bien et connaissais bien, je savais quoi mettre dans mon plan, je connaissais plutôt bien mes développements et je savais quelles références utiliser et malgré tout, je n'avais que très peu d'avance. J'ai fini d'écrire le plan 10 minutes avant qu'il ne soit ramassé pour photocopie. Il ne faut pas trainer lors de la préparation ! (et ne pas faire des plans à 40 items...)
L'oral.
J'ai été surpris par les questions : le jury a posé beaucoup de questions sur le plan, comment je faisais pour démontrer tel résultat, etc, mais presque pas d'exercices.
Pas de réponse fournie.
108 : Exemples de parties génératrices d’un groupe. Applications.
229 : Fonctions monotones. Fonctions convexes. Exemples et applications.
Pas de réponse fournie.
Pas de réponse fournie.
Sur le développement :
- Est-ce que deux matrices de permutation conjuguées sur $M_n(C)$ le sont forcément sur $M_n(R)$ ?
- Pourquoi introduire les polynômes cyclotomiques pour étudier la multiplicité des racines du polynôme caractéristique $\prod_{i=1}^k X^{l_i} -1$ au lieu de simplement considérer chaque racine $n^{ème}$ de l'unité ? (J'ai répondu que décomposer $X^{l_i} -1$ en produit de polynômes cyclotomiques revenait à faire ça).
- Pourquoi le fait que pour tout d, #{i / d | $l_i$} = #{j / d | $k_j$} implique-t-il que pour tout n, #{i / n = $l_i$} = #{j / n = $k_j$} ?
Sur le plan:
- Est-ce que les matrices de transposition sont nécessaires pour engendrer $GL_n(R)$ ? Est-ce qu'elles appartiennent à $SL_n(R)$ (j'avais dit que oui dans mon plan alors que non, j'ai corrigé quand ils m'ont demandé quel était le déterminant de ces matrices). Lien entre ces matrices et les transposition, quel sous-groupe de $GL_n(R)$ engendrent-elles ?
- Quels sont les morphismes possibles du groupe symétrique dans ($C^*$, *) ? (L'objectif est de montrer qu'on a uniquement le morphisme trivial et la signature, en considérant l'image des transpositions). Je me suis rappelé de la preuve en court de route, donc j'ai pu finir rapidement.
- Quels sont les inversibles de Z/7Z ? Que peut-on dire du groupe des inversibles (isomorphe à Z/6Z) ? Quels sont ses générateurs ? (on en trouve un à la main, puis on utilise le Frobenius pour les trouver tous). C'était assez facile, donc je suis allé vite et ils ont semblé satisfaits.
- Retour sur les permutations : on a des familles de transposition à n-1 éléments qui engendrent le groupe symétrique, est-il possible d'en trouver des plus petites ? (Non, on le prouve en montrant qu'une famille F plus petite n'engendre pas toutes les permutations. En effet, si on a une famille plus petite, on peut la décomposer en au moins deux sous-familles non-vides ayant des supports disjoints. Ça se prouve en considérant le graphe dont les sommets sont les éléments de [1,n] et les arêtes (i,j) sont les transposition de F : on a n sommets et n-2 arêtes au maximum, donc forcément deux composantes connexes au moins.) Celui qui m'avait posé la question m'a un peu guidé, mais dans l'ensemble je m'en suis sorti seul. Question bonus : existe-t-il d'autre familles génératrices, avec moins d'éléments ? (Oui, une transposition et un n-cycle)
- Sur le groupe des bijections de C dans C, on considère la conjugaison complexe et la multiplication par $e^{2i\pi / n}$, quels groupe engendrent-elles ? (Le groupe diédral)
Ils me laissaient développer mes idées, tout en me guidant quand je prenais une mauvaise direction. Dans l'ensemble, leurs indications m'ont souvent permis de rebondir et d'avancer, donc il n'y a pas trop eu de blanc.
Des questions faciles par rapport à ce à quoi je m'attendais, j'aurais peut-être du mettre plus de choses dans mon plan.
(I. Généralités sur les générateurs, II. Groupes monogènes (Z et Z/nZ), III. Groupes symétriques et diédraux, IV. Groupe linéaire)
Pas de réponse fournie.
108 : Exemples de parties génératrices d'un groupe. Applications.
Pas de réponse fournie.
Pas de réponse fournie.
J'ai proposé 3 développements, Sylow+ majoration du cardinal d'une partie génératrice minimale, Prolongement des caractères+classification des groupes abéliens finis et Frobénius Zolotarev+calcul de (2/p) (FZ se démontre à partir du fait que GL(E) est engendré par les dilatations)
Ils ont choisi le théorème de classification des groupes.
Ils m'ont demandé pourquoi le prolongement proposé était bien défini, j'ai donné tous les éléments mais je n'ai pas su recoller les morceaux et au bout de 5 minutes ils m'ont dit regardez c'est parce que vous n'avez pas utiliser les 2 côtés de l'égalité.
A un moment j'ai dit qu'on pouvait prendre n'importe quel caractère non trivial du groupe engendré qui réalise le ppcm des ordres alors qu'il fallait choisir un morphisme injectif, ils m'ont donc demandé de construire un caractère injectif d'un groupe cyclique.
Ils m'ont demandé de redémontrer le théorème du produit direct dans le cadre des groupes abéliens parce que je m'en suis servi dans ma démonstration. J'ai répondu de manière concise en me servant de quelques éléments que j'avais écris au tableau.
Ils m'ont demandé si c'était difficile de démontrer le fait qu'il existait un élément dont l'ordre est égal au ppcm des ordres. J'ai répondu que non, la clef était le fait que si les ordres de a et b sont premiers entre eux alors l'ordre de ab est le produit des ordres mais que ça ne marchait pas si le groupe n'était pas abélien.
Ils m'ont demandé de donner la classification des groupes abéliens de type fini sans démonstration. Par chance je connaissais la réponse et j'avais oublié de le mettre dans mon plan; j'ai parlé rapidement des groupes abéliens libre de type fini et que donc avec le théorème que l'on avait montré, en concaténant les 2 résultats on obtenait la classification voulue.
Ils m'ont demandé si le lemme sur le ppcm des ordres était vrai sur les groupes non abéliens (visiblement le juré ne m'avait pas écouté). J'ai répondu que pour S3 ça ne marchait pas, il n'a pas d'élément d'ordre 6.
Ils m'ont demandé de démontrer pourquoi il n'y avait que la signature comme morphisme non trivial de Sn dans C*. J'ai dit tout ce qu'il fallait sauf le fait que les transpositions sont conjuguées et ont donc toute la même valeur, un juré me l'a demandé, j'ai corrigé en disant que les transpositions sont conjuguées et C* est commutatif.
Ils m'ont demandé de montrer que Q n'était pas un groupe libre de type fini. J'ai dit que si l'on avait un groupe abélien de type fini alors il y avait une distance entre ce groupe intersecté avec R+* et 0.
Ca ne les a pas trop satisfait, quand bien même la réponse était juste, ils m'ont fait démontrer que le groupe <1/2,1/3,1/7> était isomorphe à Z (sans passer par la classification des sous groupes de R). Je n'ai aucune idée de comment ils voulaient que je conclus. Ils ont finalement dit que la distance avec 0 leur suffisait.
Dans mon plan il y avait la connexité de Gln(C)/Gln+(R)/Sln(C ou R), ils m'ont demandé de démontrer la connexité de Gln+(R). J'ai donc montré que les transvections et les dilatations étaient reliées à l'identité puis pour n'importe quelle matrice on écrit que c'est un produit de transvections et 1 dilatation et l'on fait le produit des chemins.
Ils m'ont demandé de donner un système de générateur de On(R), j'ai dit que les réflexions engendraient On(R). Le juré qui dirigeait l'oral m'a dit qu'il avait des lacunes sur ce qu'était une réflexion et m'a donc demandé ce que c'était. Je n'ai pas su répondre :/
Ils m'ont donc demandé ce qu'il y avait dans On(R). J'ai répondu qu'il y avait les rotations. Ils m'ont demandé de montrer que ça ne pouvait pas engendrer On(R). J'ai dit "alors si je ne dis pas de bêtises les rotations commutent", un juré avait une tête de pas content j'ai donc dit "bon apparemment j'ai dit une bêtise" et les jurés ont souri. Je ne sais pas comment mais dans ma tête ça a fait tilt, j'ai dit que les rotations avaient toutes un déterminant positif et donc elles ne peuvent pas engendrer On(R). J'ai dit que peut-être On(R)=
J'avais proposé un exercice qui était "Montrer ,sans utiliser de produit semi direct, que tout groupe non commutatif d'ordre 2p avec p premier impair était isomorphe au groupe diédral D2p". Ils m'ont donc demandé de le démontrer, j'y suis presque arrivé et ils m'ont dit bon on voit que ça va marcher mais on n'a plus de temps.
(C'est un exercice tiré du Cortella)
Jury très gentil.
Mais je pensais quand même avoir une meilleure note...
Ils n'ont pas choisi mon développement original :/
14