Développement : Théorème central limite

Détails/Enoncé :

Soit $X_n$ une suite de variables iid à valeurs dans $\mathbb{R}$ admettant un moment d'ordre 2. Alors
\[Y_n=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^n(X_i-\mathbb{E}[X_i])\right]\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}(0,Var(X_1)).\]

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Possibilité d'ajouter une des deux applications suivantes :

    Application 1 : Soit $p\in\, ]0,1[$. Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles telle que pour tout $n\in\mathbb{N}^*$, $Y_n$ suive la loi binomiale $\mathcal{B}(n,p)$. Alors on a :
    $$ \frac{Y_n-np}{\sqrt{np(1-p)}} \xrightarrow[n\to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$


    Application 2 : Soit $n\in \mathbb{N}^*$. On étudie le modèle statistique $\left( \{0,1\}^n, \{\mathcal{B}(1,p)\}_{p\in\, ]0,1[}\right)$. Soit $X_n,\ldots,X_n$, un $n$-échantillon de loi de Bernoulli $\mathcal{B}(1,p)$, $p\in\,]0,1[$.
    Pour $\alpha\in\, ]0,1[$, déterminons un intervalle au niveau de confiance asymptotique $1-\alpha$ du paramètre d'intérêt $p$.

    Référence (également valable pour le TCL) : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
  • Référence :
  • Auteur :
  • Remarque :
    Attention à comment vous rédigez la construction des intervalles de confiance asymptotiques ! En effet, on divise par une variable aléatoire qui s'annule avec probabilité non-nulle pour tout $n$ (bien qu'elle tende vers $0$) ! Sinon, le résultat est vraiment central et mérite un développement, même s'il n'est pas forcément compliqué à montrer grâce au théorème de Lévy (qui, lui, est plus dur à montrer). Ne vous privez pas de l'utilisation du logarithme complexe ! C'est au programme et ça simplifie quand même beaucoup la preuve !

    PS : J'ai mis qu'on prouve une version faible du théorème de Lévy. C'est bien le cas ! Le théorème de Lévy le plus général dit que si la suite des fonctions caractéristiques $\varphi_{X_n}$ converge simplement vers une fonction $\varphi$ bornée telle que $\varphi(0) = 1$ et qui est continue en $0$, alors il existe une variable aléatoire $X$ définie sur le même espace de probabilité que les variables $X_n$ telle que $X_n$ converge en loi vers $X$ ! Cela utilise le théorème de Prokhorov, donc c'est dur !
  • Références :
  • Fichier :
  • Auteur :
  • Remarque :
    La preuve du théorème en lui-même est un peu courte. À mon avis : soit on lui adjoint la preuve du théorème de Lévy (ce que j'ai fait), soit on trouve une application.

    Les références sont indiquées à la fin du plan. N'hésitez pas à me contacter pour me signaler toute erreur ou imprécision.
  • Fichier :
  • Auteur :
  • Remarque :
    *Mes développements n’ont pas été pensés pour être partagés au départ, vous excuserez mon écriture et mes notations un peu brouillonnes. Soyez vigilants sur les coquilles/erreurs possibles et critiques sur ce que vous lisez. N’hésitez pas à me contacter pour des clarifications.

    *La plupart de mes dévs contiennent un plan et un rappel des énoncés, pour être au clair sur ce qu’on a à disposition et ce qu’on veut faire.

    *Les recasages inscrits sur le document sont les numéros de 2023/2024.

    Ce développement est à tiroirs et je démontre le lien entre fonction caractéristique et moments ou donne une application du TCL selon la leçon.

    Recasages : 218 - 261 - 262 - 266
  • Référence :
  • Fichier :

Références utilisées dans les versions de ce développement :

Probabilités 2 , Ouvrard (utilisée dans 32 versions au total)
Probabilités, Barbe-Ledoux (utilisée dans 28 versions au total)
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis (utilisée dans 139 versions au total)
Statistique mathématique en action, Rivoirard, Stoltz (utilisée dans 5 versions au total)
Probabilités pour les non-probabilistes, Walter Appel (utilisée dans 21 versions au total)
De l'intégration aux probabilités, Garet, Kurtzman (utilisée dans 54 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 180 versions au total)