Soit $X_n$ une suite de variables iid à valeurs dans $\mathbb{R}$ admettant un moment d'ordre 2. Alors
\[Y_n=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^n(X_i-\mathbb{E}[X_i])\right]\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}(0,Var(X_1)).\]
Possibilité d'ajouter une des deux applications suivantes :
Application 1 : Soit $p\in\, ]0,1[$. Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles telle que pour tout $n\in\mathbb{N}^*$, $Y_n$ suive la loi binomiale $\mathcal{B}(n,p)$. Alors on a :
$$ \frac{Y_n-np}{\sqrt{np(1-p)}} \xrightarrow[n\to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$
Application 2 : Soit $n\in \mathbb{N}^*$. On étudie le modèle statistique $\left( \{0,1\}^n, \{\mathcal{B}(1,p)\}_{p\in\, ]0,1[}\right)$. Soit $X_n,\ldots,X_n$, un $n$-échantillon de loi de Bernoulli $\mathcal{B}(1,p)$, $p\in\,]0,1[$.
Pour $\alpha\in\, ]0,1[$, déterminons un intervalle au niveau de confiance asymptotique $1-\alpha$ du paramètre d'intérêt $p$.
Référence (également valable pour le TCL) : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
Attention aux prérequis, dans cette version le théorème de Lévy et la régularité de la fonction caractéristique ne sont pas démontré.
Rappel : attention aux erreurs/typos possibles et à la pertinence des développements, c'est à vous de vérifier et de juger.
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.