Développement : Théorème central limite

Détails/Enoncé :

Soit $X_n$ une suite de variables iid à valeurs dans $\mathbb{R}$ admettant un moment d'ordre 2. Alors
\[Y_n=\frac{1}{\sqrt{n}}\left[\sum_{i=1}^n(X_i-\mathbb{E}[X_i])\right]\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}(0,Var(X_1)).\]

Autres années :

Versions :

  • Auteur :
  • Remarque :
    Possibilité d'ajouter une des deux applications suivantes :

    Application 1 : Soit $p\in\, ]0,1[$. Soit $(Y_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles telle que pour tout $n\in\mathbb{N}^*$, $Y_n$ suive la loi binomiale $\mathcal{B}(n,p)$. Alors on a :
    $$ \frac{Y_n-np}{\sqrt{np(1-p)}} \xrightarrow[n\to +\infty]{\mathcal{L}} \mathcal{N}(0,1).$$


    Application 2 : Soit $n\in \mathbb{N}^*$. On étudie le modèle statistique $\left( \{0,1\}^n, \{\mathcal{B}(1,p)\}_{p\in\, ]0,1[}\right)$. Soit $X_n,\ldots,X_n$, un $n$-échantillon de loi de Bernoulli $\mathcal{B}(1,p)$, $p\in\,]0,1[$.
    Pour $\alpha\in\, ]0,1[$, déterminons un intervalle au niveau de confiance asymptotique $1-\alpha$ du paramètre d'intérêt $p$.

    Référence (également valable pour le TCL) : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
  • Référence :
  • Auteur :
  • Remarque :
    Attention à comment vous rédigez la construction des intervalles de confiance asymptotiques ! En effet, on divise par une variable aléatoire qui s'annule avec probabilité non-nulle pour tout $n$ (bien qu'elle tende vers $0$) ! Sinon, le résultat est vraiment central et mérite un développement, même s'il n'est pas forcément compliqué à montrer grâce au théorème de Lévy (qui, lui, est plus dur à montrer). Ne vous privez pas de l'utilisation du logarithme complexe ! C'est au programme et ça simplifie quand même beaucoup la preuve !

    PS : J'ai mis qu'on prouve une version faible du théorème de Lévy. C'est bien le cas ! Le théorème de Lévy le plus général dit que si la suite des fonctions caractéristiques $\varphi_{X_n}$ converge simplement vers une fonction $\varphi$ bornée telle que $\varphi(0) = 1$ et qui est continue en $0$, alors il existe une variable aléatoire $X$ définie sur le même espace de probabilité que les variables $X_n$ telle que $X_n$ converge en loi vers $X$ ! Cela utilise le théorème de Prokhorov, donc c'est dur !
  • Références :
  • Fichier :

Références utilisées dans les versions de ce développement :

Probabilités 2 , Ouvrard (utilisée dans 29 versions au total)
Probabilités, Barbe-Ledoux (utilisée dans 23 versions au total)
Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis (utilisée dans 131 versions au total)
Statistique mathématique en action, Rivoirard, Stoltz (utilisée dans 5 versions au total)
Probabilités pour les non-probabilistes, Walter Appel (utilisée dans 19 versions au total)
De l'intégration aux probabilités, Garet, Kurtzman (utilisée dans 39 versions au total)
Analyse pour l'agrégation, Queffelec, Zuily (utilisée dans 163 versions au total)