Développement : Lemme de Morse et application

Détails/Enoncé :

Autres années :

Versions :

  • Auteur :
  • Remarque :
    L'application concerne la stabilité des systèmes newtoniens.

    Énoncé : Soient un entier $n\ge 1$, $\mathcal{U}$ un ouvert de $\mathbb{R}^n$ contenant l'origine $\mathbf{0}$, et $f$ un élément de $\mathcal{C}^3(\mathcal{U}, \mathbb{R})$. On suppose que la différentielle de $f$ est nulle en l'origine et que sa différentielle d'ordre $2$ est non dégénérée en l'origine.
    Alors il existe un $\mathcal{C}^1$-difféomorphisme $\Phi$ d'un voisinage $\mathcal{V}$ de $ \mathbf{0} $ sur un voisnage $\mathcal W$ de $ \mathbf{0} $ inclus dans $\mathcal U$, qui conserve l'origine et tel que pour tout $ Z \in \mathcal{V}$, on ait :
    \begin{equation} f(\Phi( Z) ) - f( \mathbf{0} ) = \frac{1}{2} \mathrm{D}^2_{ \mathbf{0} }f\cdot \left( Z,Z\right). \end{equation}


    Référence : Analyse pour l'agrégation de mathématiques, 40 développements, J. et L. Bernis, Ellipses
  • Référence :

Références utilisées dans les versions de ce développement :

Analyse pour l'agrégation de mathématiques, 40 développements, Julien Bernis et Laurent Bernis (utilisée dans 144 versions au total)