Développement : Equation de la chaleur dans une barre [no pdf]

Détails/Enoncé :

Versions :

  • Auteur :
  • Remarque :
    Énoncé : Soit $f\in\mathcal{C}^1\left([0,\pi],\mathbb{R}\right)$ telle que $f(0)=f(\pi)=0$. Notons $K_f$ l'ensemble des éléments
    $$u\;:\:\begin{cases} [0,\pi] \times \mathbb{R}_{+} \longrightarrow \mathbb{R}, \\
    (x,t)\longmapsto u(x,t).
    \end{cases}$$
    de $\mathcal{C}\left([0,\pi] \times \mathbb{R}_+\right)$ qui vérifient :

    1.i. $\partial_x u$ et $\partial_t u$ existent et sont continues sur $[0,\pi] \times \mathbb{R}_+^*$,
    ii. $\partial^2_{x^2} u$ existe et est continue sur $[0,\pi] \times \mathbb{R}_+^*$,
    iii. pour tout réel $t\ge 0$, $u(0,t)=u(\pi,t)=0$,
    iv. pour tout $ (x,t)\in [0,\pi] \times\mathbb{R}_+^*$, $\partial_t u(x,t)=\partial^2_{x^2} u(x,t)$\,;

    2. Pour tout $ x\in[0,\pi]$, $u(x,0)=f(x)$.
    Alors $K_f$ est un singleton.

    Nous donnerons de plus l'expression de l'unique élément de $K_f$ sous forme de la somme d'une série d'applications.
  • Référence :