Tout est pris dans Gourdon à différents endroits pour obtenir un développement asymptotique des sommes partielles de la série harmonique à tout ordre. J'ai changé quelques arguments et regroupé ce dont on a besoin pour le résultat final mais il n'y a rien d'original dans cette version. Attention aux coquilles
Ce développement a le gros avantage de très bien se recaser dans 224 ! Et même dans 230 en prime !
Sa difficulté repose dans son caractère très calculatoire, mais une fois qu'on s'est entraîné plusieurs fois, il n'est pas difficile. Cependant, il faut bien maîtriser tout ce qui tourne autour des polynômes et nombres de Bernoulli (d'où ils viennent ? Quelles sont leurs propriétés ? Comment les démontrer ?) Tout est dans le Gourdon.
A la fin on affirme que $\gamma_r$ ne dépend pas de $r$ car on sait que : $H_n=\ln(n)+\gamma+o(1)$, mais il faut savoir démontrer ce fait (voir bas de la 2e page). Je n'avais jamais le temps de le loger dans les 15 minutes, déjà qu'il faut pas mal se dépêcher pour faire tout tenir...
Mes documents sont longs, déjà parce que je parle vite (donc il faut beaucoup de contenus), que j'écris gros, et que j'aime bien comprendre dans les détails, mais aussi et surtout parce qu'il y a beaucoup de remarques/infos à la fin, pour essayer d'être capable de répondre au max de questions liées au dev !
Evidemment, il est fort possible qu'il y ait des coquilles de ci de là, n'hésitez pas à me les signaler !
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.