(2016 : 246 - Séries de Fourier. Exemples et applications. )
Les différents résultats autour de la convergence ($L^2$ , Fejér, Dirichlet, . . .) doivent être connus. Il faut avoir les idées claires sur la notion de fonctions de classe $C^1$ par morceaux (elles ne sont pas forcément continues). Dans le cas d’une fonction continue et $C^1$ par morceaux on peut conclure sur la convergence normale de la série Fourier sans utiliser le théorème de Dirichlet. Il est classique d’obtenir des sommes de séries remarquables comme conséquence de ces théorèmes. On peut aussi s’intéresser à la formule de Poisson et à ses conséquences. L’existence d’exemples de séries de Fourier divergentes, associées à des fonctions continues (qu’ils soient explicites ou obtenus par des techniques d’analyse fonctionnelle) peuvent aussi compléter le contenu.
Mais il est souhaitable que cette leçon ne se réduise pas à un cours abstrait sur les coefficients de Fourier. La résolution d’équations aux dérivées partielles (par exemple l’équation de la chaleur) peuvent illustrer de manière pertinente cette leçon, mais on peut penser à bien d’autres applications (inégalité isopérimétrique, comportements remarquables des fonctions à spectre lacunaire, ...).