(2016 : 122 - Anneaux principaux. Exemples et applications.)
Cette leçon n’est pas uniquement théorique, Il est possible de présenter des exemples d’anneaux principaux classiques autres que $Z$ et $K[X]$ (décimaux, entiers de Gauss ou d’Eisenstein), accompagnés d’une description de leurs irréductibles. Les applications en algèbre linéaire ne manquent pas et doivent être mentionnées. Par exemple, les notions de polynôme minimal sont très naturelles parmi les applications. Les anneaux euclidiens représentent une classe d’anneaux principaux importante et l’algorithme d’Euclide a toute sa place dans cette leçon pour effectuer des calculs.
S’ils le désirent, les candidats peuvent aller plus loin en s’intéressant à l’étude des réseaux, à des exemples d’anneaux non principaux, mais aussi à des exemples d’équations diophantiennes résolues à l’aide d’anneaux principaux. À ce sujet, il sera fondamental de savoir déterminer les unités d’un anneau, et leur rôle au moment de la décomposition en facteurs premiers. De même, le calcul effectif des facteurs invariants de matrices à coefficients dans certains anneaux peut être fait.