Développement : Propriétés de l'anneau Z/nZ

Détails/Enoncé :

Théorème : L'application $\varphi (x) = x^k$ de $Z/nZ$ dans $Z/nZ$ est bijective ssi $n$ est sans facteur carré et si $p-1$ est premier avec $k$ pour tout facteur premier $p$ de $n$.

Théorème : Il y a exactement $2^s$ idempotents dans $Z/nZ$ où $s$ est le nombre de nombres premiers intervenant dans la décomposition en irréductibles de $n$.

Recasages pour l'année 2019 :

Autres années :

Versions :

Pas de version pour ce développement.