(2015 : 232 - Méthodes d'approximation des solutions d'une équation $F(X) = 0$. Exemples.)
Trop de candidats se limitent au simple cas où $X$ est une variable scalaire. Il serait bon d'envisager les extensions des méthodes classiques dans le cas vectoriel. Au delà de la méthode de Newton, d'intéressants développements peuvent s'intéresser à la résolution de systèmes linéaires, notamment par des méthodes itératives. À propos de la version bidimensionnelle de la méthode de Newton, il convient de comprendre la généralisation en dimension supérieure de la division par la dérivée.