(2014 : 220 - Équations différentielles $X' = f(t,X)$. Exemples d'études des solutions en dimension $1$ et $2$.)
C'est l'occasion de rappeler une nouvelle fois que le jury s'alarme des nombreux défauts de maîtrise du théorème de Cauchy-Lipschitz. La notion même de solution maximale d'un problème de Cauchy est trop souvent mal comprise. Il est regrettable de voir des candidats ne connaître qu'un énoncé pour les fonctions globalement lipschitziennes ou plus grave, mélanger les conditions sur la variables de temps et d'espace. La notion de solution maximale et le théorème de sorties de tout compact sont nécessaires.
Le lemme de Gronwall semble trouver toute sa place dans cette leçon mais est curieusement rarement énoncé. L'utilisation du théorème de Cauchy-Lipschitz doit pouvoir être mise en oeuvre sur des exemples concrets. Les études qualitatives doivent être préparées et soignées.
Pour les équations autonomes, la notion de point d'équilibre permet des illustrations de bon goût comme par exemple les petites oscillations du pendule. Trop peu de candidats pensent à tracer et discuter des portraits de phase.
Enfin, il n'est pas malvenu d'évoquer les problèmatiques de l'approximation numérique dans cette leçon par exemple autour de la notion de problèmes raides et de la conception de schémas implicites pour autant que la candidat ait une matrîse convenable de ces questions.