Développement original qui permet de justifier la convergence en loi de $\mathcal{B}\left(n,\frac{\lambda}{n}\right)$ vers $\mathcal{P}(\lambda)$ avec une borne de l'erreur. L'inconvénient c'est qu'il faut apprendre la loi du couplage par cœur.
Le Garet Kurtzman n'a pas exactement la même rédaction. Pour faire court, le livre part des lois marginales au lieu de partir de la loi du couple. Mais j'avoue ne pas avoir vérifié que la méthode de bakouche (que je me suis permis de réécrire ici) rebouclait bien avec ce qui est écrit dans ce livre.
(pp 214, 450)
A la fin de mes devs je mets toujours une petite note sur les résultats annexes à savoir, c'est très subjectif et non exhaustif, il y a évidemment pleins d'autres choses à savoir sur chaque dev que ce que je mets.
Pour me contacter si besoin : axel.carpentier2001@gmail.com
Attention, ce développement est utilisé dans des leçons de votre couplage. Voulez-vous quand même le supprimer de votre couplage ?
Notre livre est édité !
Après plus d'un an et demi d'écriture, notre livre voit enfin le jour !
Cet ouvrage a été relu par des agrégatifs comme vous pour en faire un outil le plus utile possible !
Cet ouvrage propose une liste de développements analysés finement, replacés dans un contexte global listant le plus exhaustivement possible les imbrications des résultats avec le reste du monde mathématique. Le lecteur trouvera dans cet ouvrage toute les techniques fondamentales de preuve ainsi que des entraînements complets et pédagogiques afin d’être préparé au mieux pour le concours de l’agrégation de mathématiques.