(2014 : 260 - Espérance, variance et moments d'une variable aléatoire.)
Le jury attend des candidats qu'ils donnent la définition des moments centrés, qu'ils rappellent les implications d'existence de moments. Les inégalités classiques (de Markov, de Bienaymé-Chebichev, de Jensen et de Cauchy-Schwarz) pourront être données, ainsi que les théorèmes de convergence (loi des grands nombres et théorème limite central).
Le comportement des moyennes de Cesàro pour une suite de variables aléatoires indépendantes et identiquement distribuées n'admettant pas d'espérance pourra être étudié.
La notion de fonction génératrice des moments pourra être présentée.