Dans ce développement, on commence par montrer que pour tout groupe G fini, et pour tout diviseur premier p du cardinal de G, il existe un élément d'ordre p.
On montre ensuite que s'il existe un sous groupe H de G d'indice le plus petit diviseur premier p du cardinal de G, celui-ci est nécessairement distingué dans G. En particulier, tout sous groupe d'indice 2 est distingué.