1 Suite de polygone

Proposition 1.1. Soit $(z_1, \ldots, z_n) \in \mathbb{C}^n$ nn points du plan complexe donnés par leur affixe. Ils définissent, dans cet ordre, un polygone P donné par la liste de ses sommets.

On définit alors par récurrence une suite de polygone (P_k) , avec $P_0 = P$, et où les sommets de P_{k+1} sont les milieux des arêtes de P_k . Alors (P_k) converge vers l'isobarycentre de P.

Démonstration. On représente P_k par le tuple $Z_k = (z_{k,1}, \ldots, z_{k_n})$, et il s'agit alors de montrer que $Z_k \to (g, \ldots, g)$, où g est l'isobarycentre de P.

La relation de récurrence s'écrit :

$$Z_{k+1} = \left(\frac{z_{k,1} + z_{k,2}}{2}, \dots, \frac{z_{k,n} + z_{k,1}}{2}\right)$$

On peut alors la réécrire sous la forme suivante

$$Z_{k+1} = AZ_k \quad \text{avec} \quad A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \dots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 & \frac{1}{2} \end{pmatrix}$$

Et par récurrence immédiate, on a $Z_k = A^k Z_0$. Il suffit alors de montrer que (A^k) converge dans $\mathcal{M}_n(\mathbb{C})$ muni d'une norme d'algèbre |||.|||.

Pour cela, étudions les valeurs propres de A:

$$\chi_A(\lambda) = \det(A - \lambda \operatorname{Id}) = \begin{vmatrix} a_0 & \dots & a_{n-1} \\ \ddots & \ddots & \ddots \\ a_1 & \dots & a_0 \end{vmatrix}$$

avec $a_0=\frac{1}{2}-\lambda, a_1=\frac{1}{2}$ et $a_i=0$ pour i>2. On reconnaît un déterminant circulant, et en posant $P(X)=\sum_{k=0}^{n-1}a_kX^k$, et $w=\mathrm{e}^{\frac{2i\pi}{n}}$, la formule du déterminant circulant nous donne

$$\chi_A(\lambda) = \prod_{j=1}^n P(w^j) = \prod_{j=1}^n \left(\frac{1}{2} - \lambda + \frac{1}{2}w^j\right) = \prod_{j=1}^n (\lambda - y_j)$$

où $y_j = \frac{1+w^j}{2}$. Et comme $y_i = y_j \Leftrightarrow i = j$, le polynôme χ_A est scindé à racine simple, donc A est diagonalisable : $\exists P \in \operatorname{GL}_n(\mathbb{C})$ telle que $A = P^{-1}DP$ avec $D = \operatorname{diag}(y_i)$.

Or, pour $j \neq n$, on a $|y_j| = \left|\frac{1+w^j}{2}\right| = \left|\cos(\frac{\pi j}{n})\right| < 1$. On a donc $A^k \to P^{-1}\operatorname{diag}(0,\ldots,0,1)P$ qui converge bien dans $\mathcal{M}_n(\mathbb{C})$.

En notant B la limite de (A^k) , et $X = BZ_0$, on a donc $Z_k \to X$, et par continuité de A et passage à la limite, on a nécessairement X = AX. Or, l'espace correspondant à la valeur propre 1 contient le vecteur $(1, \ldots, 1)$, et comme il est de dimension 1, ce vecteur le génère complètement, donc $X = (a, \ldots, a)$, c'est à dire que (P_k) converge vers le point d'affixe a.

Enfin, on remarque que si g est l'isobarycentre de P_0 , il est aussi celui de P_k , car on a

$$g_{k+1} = \frac{1}{n} \sum_{i=1}^{n} z_{k+1,i} = \frac{1}{n} \sum_{i=1}^{n} \frac{z_{k,i} + z_{k,i+1}}{2} = \frac{1}{n} \sum_{i=1}^{n} z_{k,i} = g_k$$

Par continuité, g est encore l'isobarycentre de X, d'où a=g.

1.1 Recasage

★★★★★ 152: Déterminant. Exemples et applications.

★★★★★ 181 : Barycentres dans un espace affine réel de dimension finie, convexité. Applications.

**** 182 : Applications des nombres complexes à la géométrie. Homographies.

 $\star\star\star\star\star$ 226 : Suites vectorielles et réelles définies par une relation de récurrence $u_{n+1}=f(u_n)$. Exemples et applications.