Leçon 170 - Formes quadratiques sur un espace vectoriel de dimension finie. 1. Orthogonalité. — Orthogonalité, isotropie. Applications.

Cadre: E est un $\mathbb{K} - ev$ de dimension n, avec $car(K) \neq 2$.

1. Formes quadratiques et algèbre bilinéaire. —

- 1. Définitions et premières propriétés.
 - Def: b forme bilinéaire symétrique sur E, q forme quadratique sur E. b est appelée forme polaire de q.
 - Ex: $q((x, y, z)) = xy + yz + zx \operatorname{sur} \mathbb{R}^3$, $q(x) = \langle x, x \rangle \operatorname{sur} \mathbb{R}^n$.
 - Exemple sur \mathbb{C}^3 .
 - Pro: Une forme quadratique possède une unique forme polaire. On a un isomorphisme entre l'espace vectoriel des formes quadratiques sur E et celui des formes bilinéaires symétriques sur E.
 - Pro : Identités de polarisation : $b(x,y) = \frac{q(x+y)-q(x)-q(y)}{2} = \frac{q(x)+q(y)-q(x-y)}{2} =$
 - $\operatorname{Ex}: A \mapsto Tr(A^t.A) \operatorname{sur} M_n(\mathbb{R}).$
- 2. Forme matricielle associée à une forme quadratique.
 - Pro : Pour B une base de E, on a une unique matrice A telle que $b(x,y) = x^t \cdot A \cdot y$.
 - Def: Pour quine forme quadratique sur E et B une base de E, la forme matricielle associée à q sur B est A := Mat(b, B).
 - Rem : La dimension de l'espace des formes quadratiques sur E est donc $\frac{n(n+1)}{2}$.
 - Pro : Pour \widetilde{B} une autre base de E, P la matrice de passage de B vers \widetilde{B} , et A, \widetilde{A} les formes matricielles associées à q sur B, \widetilde{B} , on a : $\widetilde{A} = P.A.P^{-1}$.
 - Exemple matriciel. Reprendre les exemples d'avant.
- 3. Rang et noyau d'une forme quadratique.
 - Def: Le rang de q, rg(q), est le rang de sa forme matricielle associée sur une base 4. Isotropie. -
 - Rem : Le rang de q est indépendant de la base considérée.
 - Def: Le noyau de q, N(q), est $Ker(x \mapsto (y \mapsto b(x,y)))$. C'est l'ensemble des $x \in E$ tq b(x, .) est la forme linéaire nulle.
 - Def : Si $N(q) = \{0\}$, on dit que q est non-dégénérée. Elle est dégénérée sinon.
 - Pro : q est non-dégénérée $\Leftrightarrow det(A) \neq 0$.
 - Def : Une forme quadratique q est définie ssi $q(x) = 0 \Leftrightarrow x = 0$.
 - Pro : Si q est non-dégénérée, alors elle est définie.
 - Contre-ex : q((x,y)) = 2xy n'est pas définie, mais est non-dégénérée.
 - Pro : dim(E) = rq(q) + dim(N(q)).

- Def: On dit que $x \perp_a y$ ssi b(x,y) = 0. On définit $A^{\perp_q} := \{x \in E \text{ tg } b(x,y) = 0 \forall y \in A\}$ A}. On dit que $A \perp_a B$ ssi $b(x,y) = 0 \forall x \in A, y \in B$.
- Pro: A^{\perp_q} est un s-ev de E. On a $A \subset (A^{\perp_q})^{\perp_q}$. De plus, $A \subset B \Rightarrow B^{\perp_q} \subset A^{\perp_q}$.
- Pro : $E^{\perp_q} = N(q)$.
- Pro: Pour F un s-ev, on a $dim(F) + dim(F^{\perp_q}) = dim(E) + dim(F \cap N(q))$, et $(F^{\perp_q})^{\perp_q} = Vect(F, N(q)).$
- 2. Bases orthogonales.
 - Def: Une base de E (x_1,\ldots,x_n) est une base q orthogonale de E ssi les x_i sont g-orthogonaux deux à deux.
 - Rem : Dans une telle base, la forme matricielle de q est diagonale.
 - Thm: Toute forme quadratique q sur E possède une base q-orthogonale.
 - Méthode de Gauss.
 - Rem : Cela permet de construire des bases q-orthogonales.
 - Ex : Un exemple.
 - Ex : q((x, y, z)) = xy + yz + zx.
- 3. Groupe orthogonal associé à une forme quadratique.
 - On veut étudier les éléments de End(E) qui préservent q.
 - Def: On note O(q) l'ensemble de $f \in End(E)$ tels que $q \circ f = f$.
 - Pro : O(q) est un groupe.
 - Pro: Pour B une base de E, A la forme matricielle de q et M := Mat(f, b), on a $f \in O(q) \Leftrightarrow M^t.A.M = A.$
 - Pro : Si $f \in O(q)$, alors son adjoint f^* est dans O(q).
 - Ex : Pour $q(x) = \langle x, x \rangle$, $f \in O(q)$ ssi $f \circ f^* = id_E$, càd ssi M = Ma(f, B) vérifie $M^t.M = I_n.$
 - Ex: q((x,y)) = 2xy. La base $B := \{(1,1), (1,-1)\}$ est q-orthogonale, et $f \in O(q)$ ssi M = Mat(f, B) vérifie.
- - Def : Le cône isotrope I de q est $\{x \in E \text{ tq } q(x) = 0\}$.
 - Pro: On a $N(q) \subset I$. I est stable par multiplication par un scalaire, mais il n'est pas stable par addition.
 - Contre-ex: q((x,y)) = 2xy. On a (0,1), (1,0) = I mais $(1,1) \notin I$.
 - Def : Un s-ev F de E est isotrope ssi l'intersection de F et de F^{\perp_q} est non-réduite à $\{0\}$. F est anisotrope sinon. On dit que F est totalement isotrope si $F \subset F^{\perp_q}$.
 - Rem : Si F est anisotrope, alors $dim(E) = dim(F) + dim(F^{\perp_q})$
 - Pro : Caractérisations de l'isotropie/l'isotropie totale.
 - Ex: Pour q((x,y,z)) = 2yz, F = Vect((1,0,0),(0,1,0)) est totalement isotrope. $F_2 = Vect((0,1,1))$ est anisotrope.

2. Orthogonalité et isotropie. —

3. Réduction et classification des formes quadratiques. —

1. Classification. —

- Def: Relation d'équivalence de formes quadratiques à un isomorphisme linéaire près.
- Pro : $q \sim q' \Leftrightarrow \exists P \in Gl_n(\mathbb{K}) \text{ tq } A' = P^t.A.P.$
- Def : Le discriminant de q est la classe de det(A) dans $\mathbb{K}^*/((\mathbb{K}^*)^2)$ si q est non-dégénérée, et vaut 0 si q est dégénérée. Il ne dépend pas de la base choisie.
- Rem : $\mathbb{R}^*/((\mathbb{R}^*)^2)$ s'identifie à $\{\pm 1\}$. $\mathbb{C}^*/((\mathbb{C}^*)^2)$ s'identifie à $\{1\}$. $\mathbb{F}_l^*/((\mathbb{F}_l^*)^2)$ s'identifie à $\{1,\varepsilon\}$ où ε est un non-carré de \mathbb{F}_l .
- Pro : Deux formes quadratiques équivalentes ont même rang, des noyaux de même dimension, et même discriminant. Mais cela n'est pas suffisant pour caractériser cette équivalence.
- Contre-ex : $\pm (x^2 + y^2)$ sur \mathbb{R}^2 ont même rang et même discriminant, mais ne sont pas équivalentes.

2. Réduction des formes quadratiques. —

- Thm : Si $\mathbb{K} = \mathbb{C}$ et rg(q) = r, alors q est équivalente à $x \mapsto x_1^2 + \dots + x_r^2$.
- Théorème d'inertie de Sylvester : Si $\mathbb{K} = \mathbb{R}$ et q est de rang r, alors on a un $0 \le p \le r$ tel que q soit équivalente à $x \mapsto x_1^2 + \dots + x_p^2 (x_{p+1}^2 + \dots + x_r^2)$.
- On dit alors que q est de signature (p, r p) et ce couple ne dépend que de q.
- App : Une forme quadratique réelle est définie ssi r=q. Elle est positive ssi p=r et négative ssi p=0.
- Ex : Pour n=2 et $q((x,y))=ax^2+bxy+cy^2$ avec a>0, on a $det(A)\equiv b^2-4ac$ et le signe de b^2-4ac détermine la signature de q.
- App : Il y a n+1 classes d'équivalences de formes quadratiques non-dégénérées sur \mathbb{R}^n .
- Rem : Dans l'étude du groupe orthogonal, on peut s'intéresser à O(sign(q)) plutôt que O(q) car ces groupes sont conjugués.
- Thm : Si $K = \mathbb{F}_l$ et rg(q) = r, alors q est équivalente à $x \mapsto x_1^2 + \dots + x_r^2$ ou à $x \mapsto \varepsilon \cdot x_1^2 + x_2^2 + \dots + x_r^2$, avec ε un non-carré de \mathbb{F}_l .
- Dev : Loi de réciprocité quadratique : Soient p,m des nombres premiers impairs distincts.

Alors
$$\left(\frac{p}{m}\right) = \left(\frac{m}{p}\right) \cdot (-1)^{\frac{p-1}{2} \cdot \frac{m-1}{2}}$$
, où $\left(\frac{x}{p}\right) = \begin{cases} 1 \text{ si x est un carr\'e mod(p)} \\ 0 \text{ si } x = 0 \text{ mod(p)} \\ -1 \text{ sinon} \end{cases}$

3. Réduction simultanée sur un espace euclidien. —

- Théorème de réduction simultanée .
- Application de la méthode de réduction simultanée sur un exemple.
- Rem : Cette méthode est moins efficace que la méthode de Gauss mais permet d'avoir une base orthogonale à la fois pour q et pour le produit scalaire ambiant.
 Elle est utile pour déterminer la forme d'une quadrique sur une base orthonormée sans avoir à la dilater/contracter.

4. Quelques applications. —

1. Etude de la hessienne. —

- Def : Pour $f: \mathbb{R}^n \to \mathbb{R}$ deux fois différentiable, on appelle hessienne de f la différentielle seconde de f, notée $D_x^{(2)}(f)(.,.)$.
- Pro : C'est une forme bilinéaire sur \mathbb{R}^n , dont la matrice dans la base canonique de \mathbb{R}^n est $(\frac{\partial}{\partial x_i}(\frac{\partial}{\partial x_i}f))_{i,j}$.
- Théorème de Schwarz : $D_x^{(2)}(f)(.,.)$ est symétrique.
- On peut ainsi associer à la hessienne de f une forme quadratique.
- Thm : f admet un maximum/minimum local ssi $D_x(f) \equiv 0$ et si $D_x^{(2)}(f)$ est positive/négative.
- On peut ainsi étudier les extrema d'une fonction 2 fois différentiable f en regardant les x pour lesquels $D_x(f)$ est nulle, puis en étudiant la signature de $D_x^{(2)}(f)$.
- Ex: $f(x) = \langle Ax, x \rangle \langle b, x \rangle$ avec A symétrique définie positive. $D_x(f)(h) = 2 \langle Ax, h \rangle \langle b, h \rangle = \langle (2Ax + b), h \rangle$ s'annule en $x_0 = -\frac{1}{2}A^{-1}.b$. Et $D_{x_0}^2(f)(h,h) = \langle Ah, h \rangle$ définie positive. Donc f admet un minimum global qui est atteint.
- **Dev**: Lemme de Morse : Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}$ de classe C^3 . Soit $x \in U$ tq $D_x(f) = 0$, et soit (p,q) la signature de la hessienne de f, $D_x^2(f)$. Alors il existe un voisinage V de x, W un voisinage de 0, et $g: V \to W$ un C^1 -difféomorphisme tel que $\forall y \in W$, $f(g^{-1}(y)) = f(x) + y_1^2 + \dots + y_p^2 (y_{p+1}^2 + \dots + y_{p+q}^2)$.
- App : Equation de la tangente en un point double dans \mathbb{R}^2 .
- App : Etude locale d'une surface par rapport à son plan tangent via une forme quadratique.

2. Classification des coniques et quadriques. —

- Def : Une quadrique de \mathbb{R}^n est l'ensemble des solutions d'une équation de la forme q(x) + l(x) + c = 0, où q est quadratique, l est linéaire, c est constante.
- $Ex: 3x^2 + 2y^2 + 2xy 4x 6 = 0.$
- Etant donné une quadrique d'équation q(x)+l(x)+c=0, la quadrique homogénéisée à cette équation est $Q(x,z)=q(x)+l(x)z+cz^2$, définie sur \mathbb{R}^{n+1} .
- Rem : $C = I(Q) \cap \{z=1\}$. Si n=2, on parle de coniques. Selon I(Q) et I(q), on peut classifier les coniques.
- Pro : Classification affine des coniques en fonction de Q et q. (Dans un grand tableau prenant la signature de Q, la forme de I(q), et la conique résultant de cela).
- Pro: Par 5 points du plan passe une conique. Elle est unique ssi aucun sous-ensemble de 4 points parmi les 5 n'est aligné.

Références

Grifone : Rang et noyau d'une forme quadratique. Groupe orthogonal de q, Méthode de Gauss, exemples. Isotropie. Théorème de Sylvester, signature. Théorème de réduction simultanée, méthode, exemple. Coniques, classification des coniques.

Gourdon: Def forme bilin sym, quadratique, forme polaire, forme matricielle. Formes quadratiques positives, définies, Schwarz, Minkowski. Orthogonalité et bases q-orthogonales.

Perrin : Equivalence de formes quadratiques, discriminant, Exemple, contre-exemple. Ré-

duction de formes quadratiques. Rouvière : Hessienne, étude des extrema locaux. Lemme de Morse.(Dev) Caldero,Germoni : Loi de réciprocité quadratique.(Dev)

May 18, 2017

Vidal Agniel, École normale supérieure de Rennes