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DIFFERENTIELLE DU FLOT
- 214, 215, 220, 221 -

Dans ce développement, on considére d € N* et f : R — R? un champ de vecteurs de classe
C'. On s’intéresse a 1’équation différentielle autonome :

z’ = f(z) (*)

Comme f est C', c’est un champ de vecteur localement lipschitzien en la variable d’état : le

théoréme de Cauchy-Lipschitz indique que pour toute condition initiale 2y € R, il existe une

solution locale & (x) prenant la valeur zy et ¢ = 0, solution qu’on notera x(—; zg). Notre objectif
est de démontrer qu’on peut avoir un certain contréle sur le temps d’existence des solutions :

Théoréme 1 ([2], I1.2.5). Soit o € R?. Il existe T* > 0 tel que pour tout 0 < T < T*,
il existe un voisinage V de o dans R? tel que pour tout xq, le domaine de définition de la
solution mazimale & (x) issue de xo contienne [—T,T]. De plus, lapplication :

V' 3 20 = 2(—;20)|[—1,1) (1)

est de classe C.

La démonstration consistera en une utilisation astucieuse du théoréme des fonctions impli-
cites permettant d’exprimer localement une solution du probléme comme une fonction C* de la
condition initiale. Introduisons quelques notations. Fixons T' > 0 tel que x(—, ) soit définie au
moins sur [—7,T] On définit :

B = (C°([-T, T}, R?), [ - ll0) 2)

On reformule le fait d’étre solution de (x) comme le fait de satisfaire une équation vectorielle de
la fagon suivante :

F:ExR!= E (3)
t
(z,20) — (t — x(t) —xo — / f(w(s))ds)
0
11 est alors évident que = € E est solution de (x) sur [T, T] avec la condition initiale z(0) = x¢
si, et seulement si, F'(z,xg) = 0. Cherchons a appliquer le théoréme des fonctions implicites & F.
Calcul des différentielles partielles de F

On va dans un premier temps calculer les deux différentielles partielles de F', dans le but d’une
part de montrer que la fonction est C!, puis de montrer que la seconde différentielle partielle est
inversible.
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Différentielle en x

Celle-ci est aisée a calculer, car des trois composantes de F', une seule dépend de zg. Celle-ci
correspond a ’application :

RY - E (4)
o (t — .’L‘())

Cette application est clairement linéaire et continue, aussi :
V(Z‘o,ho) € (Rd)Z, Vx € E, dQF(JZQ,J?) ~hg = (t — ho) (5)

Remarquons que Papplication (xg,z) — doF(zg, 2) est continue (elle ne dépend méme pas de x
et zg...).

Différentielle en x

Cette partie est nettement plus délicate. Commencons par le lemme suivant :

Lemme 2. On consideére :

G:E—FE (6)

R <t - /Otf(m(s))ds>

G est différentiable, et sa différentielle est donnée par :

Y(z,h) € E?, dG(z)-h = <t r—)/O df(z(s)) - h(s)ds> (7)

Démonstration. On est en dimension infinie, aucun espoir d’aide du coté des dérivées partielles!
Qu’a cela ne tienne, revenons a la définition de la différentielle. Prenons (z, k) € E?. On a alors,
pour t € [-T,T] :

Gz + h) / F(x(s) + h(s))ds (8)
/ F(2(s)) + df (2(5)) - h(s) + of|[h(s)[)ds (9)
— Ga)(t) + / df(x(s)) - h(s)ds + / of|[h(s)|])ds (10)

Ce premier calcul permet de conjecturer ’expression de la différentielle, mais ne résout pas le
probléme. On a deux choses & montrer : tout d’abord que le terme central est linéaire et continue
en h, puis que le terme résiduel est un o(]|h||oo), ce qui n’est absolument pas évident, car d’un
développement limité ponctuel de f, sous l'intégral qui plus est, on doit déduire un développement
global.
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La linéarité du terme central découle simplement de la linéarité de la différentielle et de
I'intégrale. Montrons la continuité. Pour ¢t € [-T,T], on a :

df(( \/ lldf @) * [1h(s)]ds| © (1)
< _sup[lafa()l] (12)

Notons simplement que 2 étant continue et f étant C*, application s — df(z(s)) est continue
et donc elle est bornée en norme d’opérateur sur le compact [T, T]. Ainsi, le terme central est
bien continu en h.

Occupons-nous maintenant du petit o. Posons :

At) = ‘G(m +h)(t) - G(a)(t) - /0 Af(a(5)) - hs)ds (13)
Une petite réécriture des termes donne :
h(s)) = f(x(s)) = df (x(s)) - h(s)ds (14)
Cherchons a faire apparaitre une différence de différentielles sous 'intégrale :
f(@(s) + h(s)) = fa(s)) = / L4 ((s) + 0h(s) - ()0 (15)
. Notre intégrale se réexprime alors de la facon suivante :
df )+ 0h(s)) - hs) — df(a(s)) - h(s)dbds (16)

Or l'application df est continue : par théoréme de Heine, elle est uniformément continue sur les
compacts. De plus, I'image de [—-T,T] par = est un compact de R? : soit R > 0 telle que cette
image soit incluse dans Bga(0, R). Soit € > 0. Il existe, par uniforme continuité, n > 0 tel que :

¥(20,90) € Bra(0, R)?, |lzo — woll <n = |lldf(z0) — df (o)lll < e (17)

Ainsi, pour h de norme infinie inférieure a 7 et telle que  + h reste a valeurs dans Bga (0, R) (ce
qui est vrai dés qu’on prend h suffisamment petite en norme infinie), on obtient la majoration :

]// 11 (2(s) + 0h(s))][|d0]|A(s)]ds (18)
< Te||h|oe (19)

et comme ¢ peut étre pris arbitrairement petit lorsque [||h||s — 0], on trouve bien A = o(||h||co),
ce qui achéve la démonstration du lemme. O

Ce lemme technique en poche, on calcule facilement la différentielle en = de F' :

di F(x,20) - h = <t — h(t) — /0 df(z(s)) - h(s)ds) (20)

(i). Attention & ne pas oublier les valeurs absolues : ¢ pourrait étre négatif!
(ii). 1l s’agit de I'intégrale de (6 — f(x(s) + 6h(s)))’ le long du segment reliant z(s) + h(s) & x(s)
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Il reste toutefois & montrer que Papplication (z,zq) — dy F(z, o) est continue pour obtenir
de le caractére C! de F. Cette application ne dépendant pas de x, il suffit de considérer z € E
et d’observer, pour h € Eet t € [-T,T] :

|1 F'(,20) - h(t) = diF(z, x0) - h(t)] < ’/0 I[df (z(s)) — df (2(s))] - h(s)]|ds (21)

On exploite encore l'uniforme continuité de df sur les compacts : si B(0, R) est une boule
ouverte qui contient z([—T,T]) et tel que la distance de z([T,T]) au complémentaire de cette
boule soit au moins 1, il existe 1 > n > 0 tel que :

(v, w) € (RY)?, [lv—wl| <n = [[|df(v) —df(w)l]| <e (22)

On a alors, si ||z — z||oc <7 :

T
|1 F' (2, 0) - h(t) = diF(z, 20) - h(t)] < /O ldf(z(s)) — df(z(s))lllds| [[Allc  (23)

< Tel|hf]oo (24)

En passant a la norme d’opérateur :
|z = zlloc <n = [[|d1F (2, 20) — d1 F (2, 20)|| < Te (25)

et donc di F est bien continue.

Inversibilité de d, F'(z(—; a), a)

Notons y := z(—;a)|—r,r) € E. On va montrer que diF(y, ) est inversible, de sorte &
pouvoir appliuer le théoréme des fonctions implicites. Je propose deux fagons de faire, selon la
lecon présentée.

Pour la legon 221

Pour avoir un bon recasage dans la lecon sur les équations différentielles linéaires, on va
calculer explicitement Uinverse de diF(y,«) en résolvant une équation linéaire a coeflicients
variables. Attention, cette partie ne figure pas dans la référence et nécessite la notion hors-
programme de résolvante! Soit z € E. On a, pour h € F :

i F(y,a) -h=2z < Vte[-T,T], h(t) - /0 df(y(s)) - h(s)ds = z(t) (26)

Commencons par supposer que z est C'1. Il vient alors immmeédiatement que I’éventuel anté-
cédant h doit étre C, ce qui permet de dériver 1’équation ci-dessus :

{Vt € [-T,T], W'(t) — df(y(t)) - h(t) = 2'(¢)

O F(y,a) h=z < (27)

h(0) = z(0)

Puisque Papplication ¢ — df(z(t)) est continue a valeurs dans .Z(R?), il s’agit d’un sys-
téme différentiel linéaire a coefficients variables, qu’on résout a l’aide de la formule de Duhamel.

Contactez-moi en cas de coquille & prénom.nom@ens-rennes.fr !



Introduisons R la résolvante du systéme, c’est-a-dire ’application :
[-T,T)> —» Z(R?) (28)
(t,5) = R(t,s)

telle que 01 R(t, s) = df(y(t)) o R(t, s) et R(t,t) = I; pour tout t et s. On a alors :
t
i F(y,a) -h=2z < Vte[-T,T], h(t) = R(t,0) - z(0) +/ R(t,s) - z(s)ds (29)
0

On va chercher & éliminer les occurences de 2’ dans cette formule, afin d’obtenir une formule qui
puisse étre encore valable lorsque z est seulement supposée C. Pour cela, une petite intégration
par parties nous donnera la solution :

di F(y,a)-h=2z < Vte[-T,T], h(t) = R(t,0)-2(0)+[R(t,s) - Z(S)Ezg_/o O2R(t,s)-z(s)ds

(30)
Par ailleurs, on sait calculer les dérivées partielles de la résolvante :

R(t,s) = —R(t,s) o df(y(s)) (31)

ce qui fournit, aprés simplification :
t
A1 F(y,a) -h=2z < Yte[-T,T], h(t) = z(t) —|—/ R(t,s) odf(y(s)) - z(s)ds (32)
0

Montrons maintenant que cette expression est encore celle de la solution lorsque z est seule-
ment supposée continue. Posons :

S:E—E (33)

zZ (t = z(t)+ | R(t,s)odf(y(s)) - z(s)ds)

0
S est linéaire et continue en z, puisque :

IS(Z)IOO<<1+ sup |[[R(¢,8)||] x sup |||df(y(5))|>||Z|oo (34)
12 se[—T,T)

(t,s)€[-T,T

ou les deux supremums sont finis car s — df(y(s)) et (¢,s) — R(t,s) sont continues et évaluées
sur un compact.

On exploite maintenant la densité de C([~T,T],R?) dans E (qu'on peut observer par
exemple & I’aide tu théoréme de Weierstraf) : restreints a 1’espace des fonctions C*, on a I’égalité :

di1F(y,a)0 S =So0di F(y,a) = Iden (35)

égalité qui se transporte sur E tout entier par uniforme continuité des opérateurs manipulés.
Ainsi, d; F(y, ) est inversible en tant qu’opérateur de E.
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Pour les autres lecons

Il y a un moyen plus rapide de procéder, qui oblige cela dit & contraindre plus la valeur de
T. On observe :
d1F(y,a) =Idg — H (36)

ou H est 'opérateur de F défini par :

t
Whe B, H(h) = (t o / df(y(s)) - h(s)ds) (37)
0
qui est linéaire et continu en h. Sa norme d’opérateur est majorée de la fagon suivante :

H[ <T SupT]IIIdf(y(S))H\ (38)

se[—T,

donc quitte & remplacer T par T” tel que

1
sup,e—r7) [|1df (y(s))]|

(iii) (39)

On obtient que |||H||| € 1. Un résultat général sur les algeébres de Banach prouve alors que
d; F(y, ) est inversible, et son inverse est donné par :

“+o0
Qi F(y,0)" =Y H" (40)

n=0

Conclusion de I’étude

Le théoreme des fonctions implicites s’applique : il existe V' un voisinage ouvert de « dans
R? et & : V — E une fonction C* telle que :

V(x,20) € E xR, (F(z,20) =0A 20 €V) <= (x=®(x0) Axg € V) (41)

Or par définition de la fonction F', pour zg € V, ®(z0) = x(—; x0)|[—7,7]- Enfin, remarquons que
notre preuve reste valable pour tout 77 < T'; la preuve du théoréme est donc compléte!

Annexe : la résolvante

Dans cette section, je propose d’introduire les quelques outils concernant la résolvante qui
seront nécessaires si vous choisissez le chemin de preuve avec I'équation différentielle linéaire. Je
conseille de mettre les propriétés en questions dans le plan. J'utilise pour toute cette partie [1],
11-6-2.

On considére une équation différentielle linéaire a coefficients variables :

y' =A) y(t) (42)

(iii). On doit supposer que f est non constant pour écrire ¢a, mais avouons que dans le cas contraire, le probléme
n’est pas bien intéressant... Attention par ailleurs aux dépendances : T a été fixé au préalable, et on prend T’ qui
dépend de T', mais dans la suite on écrira seulement 7'...
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ot t — A(t) est une application continue a valeurs dans Z(R?) et définie sur un intervalle I de
R.

Définition A (Reésolvante). On appelle résolvante du systéme au point s € I, notée
R(—;s) la solution (globale) de I’équation linéaire matricielle :

{Xﬁ)zAwX@) (43)

X(S) = Id

Remarque : Bien que la variable soit ici matricielle, il s’agit bien d’une équation linéaire, et donc
le théoréme de Cauchy-Lipschitz linéaire s’applique.

La résolvante sert a généraliser I’exponentielle de matrice, qui fournit la solution des systémes
linéaires autonomes, au cas des coefficients variables :

Proposition B. La solution du probléme de Cauchy :

{y’(t) = A(t)y(®) (44)
y(s) =yo
est donnée par t — R(t; s)yo.
Démonstration. C’est un calcul immédiat ! Posons y : t — R(¢; s)yo. Alors on trouve :
y'(t) = OLR(t; s)yo = A()R(E; s)yo = A(t)y(t) (45)
par définition de la résolvante. De plus :
y(s) = R(s;s)yo = Layo = Yo (46)
O

Ceci va nous permettre d’utiliser la clause d’unicité du théoréme de Cauchy-Lipschitz pour
montrer des propriétés sur la résolvante.

Proposition C (Equations de la résolvante). La résolvante satisfait les équations swi-
vantes :

1. V1 eI, Y(t,s) € I?, R(t;T)R(r;s) = R(t,s)
2. L’application (t,s) — R(t;s) est continue.
8. V(t,s) € I?, O1R(t,s) = A(t)R(t,s), OaR(t,s) = —R(t,s)A(s)

Démonstration.
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1. Soit yo € R%. On considére, pour s € I fixé, Papplication u : ¢ — R(t; s)yo. On s’intéresse
alors au probléme de Cauchy :

(47)

{yur:Aa»yu>
y(r) = u(r)

Il est évident qque w est solution de ce probléme de Cauchy. Mais on sait également, par
la proposition précédente, que la solution est donnée par :

y:t = R(t;m)u(r) = R(t;7)R(7; 8)yo (48)
Ainsi, par unicité de la solution :
vVt e I, R(t;7)R(7;s)yo = R(t; $)yo (49)
Comme c’est vrai pour tout yy € R%, cette égalité se reporte sur les matrices :
V(s,t) € I?, R(t;T)R(1;8) = R(t;s) (50)
2. Comme cas particulier de la formule précédente, on trouve :
Y(t,s) € I?, R(t;s)R(s;t) = I4 (51)

Comme par construction, 'application ¢ — R(;s) est continue a s fixé, on trouve que
'application s — R(t;s) = R(s;t)”! est continue par continuité de Iinverse matriciel.
Ainsi, pour (g, s) € I?, et (t,s) € I?, on trouve :

R(t;s) = R(t;to) R(to; s) ————— R(to;t0) R(to; s0) = R(to; s0) (52)

(LS)—)(to,So)

par continuité du produit matriciel. Donc la résolvante est bien continue comme application
de deux variables.

3. Enfin, par différentiabilité de I'inverse matriciel, 'application s — R(t;s) = R(s;t)™" est
différentiable. Ainsi, en partant de 1’équation I; = R(t; s)R(s;t), on trouve :

0 = 0s[R(t; s)R(s;t)] = O2R(t; s)R(s;t) + R(t; s)01R(s;t) (53)
et par définition de la résolvante, 91 R(s;t) = A(s)R(s;t). Finalement :
2 R(t; 8)R(s;t) = —R(t; s)A(s)R(s; t) (54)

Il ne reste qu’a simplifier par R(s;t) (qui est inversible) pour obtenir I’équation souhaitée!
O

On conclut enfin avec la formule de Duhamel :

Théoréme D (Formule de Duhamel). La solution au probleme de Cauchy avec terme

| /(1) = Alt)y(t) + b(1) -
y(to) = vo
est donnée par : .
t — R(t;t0)yo + / R(t; s)b(s)ds (56)
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Remarques sur ce développement

Ce développement repose essentiellement sur du calcul différentiel en dimension infinie, ce qui
est théoriquement hors-programme & l’agreg. Ainsi, il faut étre trés carré sur le calcul différentiel
dans les espaces de Banach pour pouvoir le présenter. J’ai fait mon possible pour bien détailler
dans le poly, afin de rendre le raisonnement le plus compréhensible possible, mais je pense que
pour pouvoir faire rentrer ¢a en quinze minutes, il faudra passer plus vite sur les calculs, et donc
s’exposer & des questions de calcul différentiel, qui conduiront certainement & différentier des
fonctionnelles sur des espaces de fonctions.

La contrepartie de ca, c’est que si vous aimez le calcul diff, ce développement fournit une
trés jolie (et trés concréte!) application de la théorie dans les espaces de Banach abstraits, ce
qui justifiera de placer tout votre plan de lecon dans un cadre plus général que R™ (le dernier
rapport du jury D’écrit explicitement : c’est possible de tout faire dans les espaces de Banach a
condition d’avoir de vraies applications & proposer).

Par ailleurs, je pense que c’est un développement de trés bon niveau qui se recase trés bien
dans les quatre legons que je propose (méme équa diff linéaires & mon avis, vu qu’on utilise la
formule de Duhamel et la résolvante (penser a la mettre dans le plan le cas échéant)). Person-
nellement, j’ai horreur des équa diff et j’aime beaucoup le calcul diff, donc ce développement est
une petite pépite a mes yeux.

La référence est de notoriété publique difficile, et effectivement, tout ceci est fait de maniére
trés elliptique dedans. Au moins, on a toutes les étapes de calcul clairement indiquées, ce qui
évitera d’avoir a connaitre chaque expression sur le bout des doigts, mais la preuve pour passer
d’une formule & une autre devra étre parfaitement maitrisée pour éviter les trous de mémoire.

Bon, voila qui devrait suffire pour aujourd’hui!
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