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Dans ce développement, on considère d ∈ N∗ et f : Rd → Rd un champ de vecteurs de classe
C1. On s’intéresse à l’équation différentielle autonome :

x′ = f(x) (⋆)

Comme f est C1, c’est un champ de vecteur localement lipschitzien en la variable d’état : le
théorème de Cauchy-Lipschitz indique que pour toute condition initiale x0 ∈ Rd, il existe une
solution locale à (⋆) prenant la valeur x0 et t = 0, solution qu’on notera x(−;x0). Notre objectif
est de démontrer qu’on peut avoir un certain contrôle sur le temps d’existence des solutions :

Théorème 1 ([2], II.2.5). Soit α ∈ Rd. Il existe T ∗ > 0 tel que pour tout 0 < T < T ∗,
il existe un voisinage V de α dans Rd tel que pour tout x0, le domaine de définition de la
solution maximale à (⋆) issue de x0 contienne [−T, T ]. De plus, l’application :

V ∋ x0 7→ x(−;x0)|[−T,T ] (1)

est de classe C1.

La démonstration consistera en une utilisation astucieuse du théorème des fonctions impli-
cites permettant d’exprimer localement une solution du problème comme une fonction C1 de la
condition initiale. Introduisons quelques notations. Fixons T > 0 tel que x(−, α) soit définie au
moins sur [−T, T ] On définit :

E := (C0([−T, T ],Rd), || · ||∞) (2)

On reformule le fait d’être solution de (⋆) comme le fait de satisfaire une équation vectorielle de
la façon suivante :

F : E × Rd → E (3)

(x, x0) 7→
(
t 7→ x(t)− x0 −

∫ t

0

f(x(s))ds
)

Il est alors évident que x ∈ E est solution de (⋆) sur [−T, T ] avec la condition initiale x(0) = x0

si, et seulement si, F (x, x0) = 0. Cherchons à appliquer le théorème des fonctions implicites à F .

Calcul des différentielles partielles de F

On va dans un premier temps calculer les deux différentielles partielles de F , dans le but d’une
part de montrer que la fonction est C1, puis de montrer que la seconde différentielle partielle est
inversible.
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Différentielle en x0

Celle-ci est aisée à calculer, car des trois composantes de F , une seule dépend de x0. Celle-ci
correspond à l’application :

Rd → E (4)
x0 7→ (t 7→ x0)

Cette application est clairement linéaire et continue, aussi :

∀(x0, h0) ∈ (Rd)2, ∀x ∈ E, d2F (x0, x) · h0 = (t 7→ h0) (5)

Remarquons que l’application (x0, x) 7→ d2F (x0, x) est continue (elle ne dépend même pas de x
et x0...).

Différentielle en x

Cette partie est nettement plus délicate. Commençons par le lemme suivant :

Lemme 2. On considère :

G : E → E (6)

x 7→
(
t 7→

∫ t

0

f(x(s))ds
)

G est différentiable, et sa différentielle est donnée par :

∀(x, h) ∈ E2, dG(x) · h =

(
t 7→

∫ t

0

df(x(s)) · h(s)ds
)

(7)

Démonstration. On est en dimension infinie, aucun espoir d’aide du côté des dérivées partielles !
Qu’à cela ne tienne, revenons à la définition de la différentielle. Prenons (x, h) ∈ E2. On a alors,
pour t ∈ [−T, T ] :

G(x+ h)(t) =

∫ t

0

f(x(s) + h(s))ds (8)

=

∫ t

0

f(x(s)) + df(x(s)) · h(s) + o(||h(s)||)ds (9)

= G(x)(t) +

∫ t

0

df(x(s)) · h(s)ds+
∫ t

0

o(||h(s)||)ds (10)

Ce premier calcul permet de conjecturer l’expression de la différentielle, mais ne résout pas le
problème. On a deux choses à montrer : tout d’abord que le terme central est linéaire et continue
en h, puis que le terme résiduel est un o(||h||∞), ce qui n’est absolument pas évident, car d’un
développement limité ponctuel de f , sous l’intégral qui plus est, on doit déduire un développement
global.
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La linéarité du terme central découle simplement de la linéarité de la différentielle et de
l’intégrale. Montrons la continuité. Pour t ∈ [−T, T ], on a :∣∣∣∣∫ t

0

df(x(s)) · h(s)ds
∣∣∣∣ ⩽ ∣∣∣∣∫ t

0

|||df(x(s))||| × ||h(s)||ds
∣∣∣∣ (i) (11)

⩽ T sup
s∈[−T,T ]

|||df(x(s))||| × ||h||∞ (12)

Notons simplement que x étant continue et f étant C1, l’application s 7→ df(x(s)) est continue
et donc elle est bornée en norme d’opérateur sur le compact [−T, T ]. Ainsi, le terme central est
bien continu en h.

Occupons-nous maintenant du petit o. Posons :

∆(t) :=

∣∣∣∣G(x+ h)(t)−G(x)(t)−
∫ t

0

df(x(s)) · h(s)ds
∣∣∣∣ (13)

Une petite réécriture des termes donne :

∆(t) =

∣∣∣∣∫ t

0

f(x(s) + h(s))− f(x(s))− df(x(s)) · h(s)ds
∣∣∣∣ (14)

Cherchons à faire apparaître une différence de différentielles sous l’intégrale :

f(x(s) + h(s))− f(x(s)) =

∫ 1

0

df(x(s) + θh(s)) · h(s)dθ (ii) (15)

. Notre intégrale se réexprime alors de la façon suivante :

∆(t) =

∣∣∣∣∫ t

0

∫ 1

0

df(x(s) + θh(s)) · h(s)− df(x(s)) · h(s)dθds
∣∣∣∣ (16)

Or l’application df est continue : par théorème de Heine, elle est uniformément continue sur les
compacts. De plus, l’image de [−T, T ] par x est un compact de Rd : soit R > 0 telle que cette
image soit incluse dans BRd(0, R). Soit ε > 0. Il existe, par uniforme continuité, η > 0 tel que :

∀(x0, y0) ∈ B̄Rd(0, R)2, ||x0 − y0|| ⩽ η =⇒ |||df(x0)− df(y0)||| ⩽ ε (17)

Ainsi, pour h de norme infinie inférieure à η et telle que x+ h reste à valeurs dans B̄Rd(0, R) (ce
qui est vrai dès qu’on prend h suffisamment petite en norme infinie), on obtient la majoration :

∆(t) ⩽

∣∣∣∣∫ t

0

∫ 1

0

|||df(x(s) + θh(s))|||dθ||h(s)||ds
∣∣∣∣ (18)

⩽ Tε||h||∞ (19)

et comme ε peut être pris arbitrairement petit lorsque [||h||∞ → 0], on trouve bien ∆ = o(||h||∞),
ce qui achève la démonstration du lemme. □

Ce lemme technique en poche, on calcule facilement la différentielle en x de F :

d1F (x, x0) · h =

(
t 7→ h(t)−

∫ t

0

df(x(s)) · h(s)ds
)

(20)

(i). Attention à ne pas oublier les valeurs absolues : t pourrait être négatif !
(ii). Il s’agit de l’intégrale de (θ 7→ f(x(s) + θh(s)))′ le long du segment reliant x(s) + h(s) à x(s)
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Il reste toutefois à montrer que l’application (x, x0) 7→ d1F (x, x0) est continue pour obtenir
de le caractère C1 de F . Cette application ne dépendant pas de x0, il suffit de considérer z ∈ E
et d’observer, pour h ∈ E et t ∈ [−T, T ] :

|d1F (x, x0) · h(t)− d1F (z, x0) · h(t)| ⩽
∣∣∣∣∫ t

0

||[df(x(s))− df(z(s))] · h(s)||ds
∣∣∣∣ (21)

On exploite encore l’uniforme continuité de df sur les compacts : si B(0, R) est une boule
ouverte qui contient x([−T, T ]) et tel que la distance de x([T, T ]) au complémentaire de cette
boule soit au moins 1, il existe 1 > η > 0 tel que :

∀(v, w) ∈ (Rd)2, ||v − w|| ⩽ η =⇒ |||df(v)− df(w)||| ⩽ ε (22)

On a alors, si ||x− z||∞ ⩽ η :

|d1F (x, x0) · h(t)− d1F (z, x0) · h(t)| ⩽

∣∣∣∣∣
∫ T

0

|||df(x(s))− df(z(s))|||ds

∣∣∣∣∣ ||h||∞ (23)

⩽ Tε||h||∞ (24)

En passant à la norme d’opérateur :

||x− z||∞ ⩽ η =⇒ |||d1F (x, x0)− d1F (z, x0)||| ⩽ Tε (25)

et donc d1F est bien continue.

Inversibilité de d1F (x(−;α), α)

Notons y := x(−;α)|[−T,T ] ∈ E. On va montrer que d1F (y, α) est inversible, de sorte à
pouvoir appliuer le théorème des fonctions implicites. Je propose deux façons de faire, selon la
leçon présentée.

Pour la leçon 221
Pour avoir un bon recasage dans la leçon sur les équations différentielles linéaires, on va

calculer explicitement l’inverse de d1F (y, α) en résolvant une équation linéaire à coefficients
variables. Attention, cette partie ne figure pas dans la référence et nécessite la notion hors-
programme de résolvante ! Soit z ∈ E. On a, pour h ∈ E :

d1F (y, α) · h = z ⇐⇒ ∀t ∈ [−T, T ], h(t)−
∫ t

0

df(y(s)) · h(s)ds = z(t) (26)

Commençons par supposer que z est C1. Il vient alors immmédiatement que l’éventuel anté-
cédant h doit être C1, ce qui permet de dériver l’équation ci-dessus :

d1F (y, α) · h = z ⇐⇒

{
∀t ∈ [−T, T ], h′(t)− df(y(t)) · h(t) = z′(t)

h(0) = z(0)
(27)

Puisque l’application t 7→ df(x(t)) est continue à valeurs dans L (Rd), il s’agit d’un sys-
tème différentiel linéaire à coefficients variables, qu’on résout à l’aide de la formule de Duhamel.
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Introduisons R la résolvante du système, c’est-à-dire l’application :

[−T, T ]2 → L (Rd) (28)
(t, s) 7→ R(t, s)

telle que ∂1R(t, s) = df(y(t)) ◦R(t, s) et R(t, t) = Id pour tout t et s. On a alors :

d1F (y, α) · h = z ⇐⇒ ∀t ∈ [−T, T ], h(t) = R(t, 0) · z(0) +
∫ t

0

R(t, s) · z(s)ds (29)

On va chercher à éliminer les occurences de z′ dans cette formule, afin d’obtenir une formule qui
puisse être encore valable lorsque z est seulement supposée C0. Pour cela, une petite intégration
par parties nous donnera la solution :

d1F (y, α)·h = z ⇐⇒ ∀t ∈ [−T, T ], h(t) = R(t, 0)·z(0)+[R(t, s) · z(s)]s=t
s=0−

∫ t

0

∂2R(t, s)·z(s)ds

(30)
Par ailleurs, on sait calculer les dérivées partielles de la résolvante :

∂2R(t, s) = −R(t, s) ◦ df(y(s)) (31)

ce qui fournit, après simplification :

d1F (y, α) · h = z ⇐⇒ ∀t ∈ [−T, T ], h(t) = z(t) +

∫ t

0

R(t, s) ◦ df(y(s)) · z(s)ds (32)

Montrons maintenant que cette expression est encore celle de la solution lorsque z est seule-
ment supposée continue. Posons :

S : E → E (33)

z 7→
(
t 7→ z(t) +

∫ t

0

R(t, s) ◦ df(y(s)) · z(s)ds
)

S est linéaire et continue en z, puisque :

||S(z)||∞ ⩽

(
1 + sup

(t,s)∈[−T,T ]2
|||R(t, s)||| × sup

s∈[−T,T ]

|||df(y(s))|||

)
||z||∞ (34)

où les deux supremums sont finis car s 7→ df(y(s)) et (t, s) 7→ R(t, s) sont continues et évaluées
sur un compact.

On exploite maintenant la densité de C1([−T, T ],Rd) dans E (qu’on peut observer par
exemple à l’aide tu théorème de Weierstraß) : restreints à l’espace des fonctions C1, on a l’égalité :

d1F (y, α) ◦ S = S ◦ d1F (y, α) = IdC1 (35)

égalité qui se transporte sur E tout entier par uniforme continuité des opérateurs manipulés.
Ainsi, d1F (y, α) est inversible en tant qu’opérateur de E.
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Pour les autres leçons
Il y a un moyen plus rapide de procéder, qui oblige cela dit à contraindre plus la valeur de

T . On observe :
d1F (y, α) = IdE −H (36)

où H est l’opérateur de E défini par :

∀h ∈ E, H(h) =

(
t 7→

∫ t

0

df(y(s)) · h(s)ds
)

(37)

qui est linéaire et continu en h. Sa norme d’opérateur est majorée de la façon suivante :

|||H||| ⩽ T sup
s∈[−T,T ]

|||df(y(s))||| (38)

donc quitte à remplacer T par T ′ tel que

T ′ <
1

sups∈[−T,T ] |||df(y(s))|||
(iii) (39)

On obtient que |||H||| ⩽ 1. Un résultat général sur les algèbres de Banach prouve alors que
d1F (y, α) est inversible, et son inverse est donné par :

d1F (y, α)−1 =

+∞∑
n=0

Hn (40)

Conclusion de l’étude
Le théorème des fonctions implicites s’applique : il existe V un voisinage ouvert de α dans

Rd et Φ : V → E une fonction C1 telle que :

∀(x, x0) ∈ E × Rd, (F (x, x0) = 0 ∧ x0 ∈ V ) ⇐⇒ (x = Φ(x0) ∧ x0 ∈ V ) (41)

Or par définition de la fonction F , pour x0 ∈ V , Φ(x0) = x(−;x0)|[−T,T ]. Enfin, remarquons que
notre preuve reste valable pour tout T ′ < T ; la preuve du théorème est donc complète !

Annexe : la résolvante
Dans cette section, je propose d’introduire les quelques outils concernant la résolvante qui

seront nécessaires si vous choisissez le chemin de preuve avec l’équation différentielle linéaire. Je
conseille de mettre les propriétés en questions dans le plan. J’utilise pour toute cette partie [1],
II-6-2.

On considère une équation différentielle linéaire à coefficients variables :

y′ = A(t) · y(t) (42)

(iii). On doit supposer que f est non constant pour écrire ça, mais avouons que dans le cas contraire, le problème
n’est pas bien intéressant... Attention par ailleurs aux dépendances : T a été fixé au préalable, et on prend T ′ qui
dépend de T , mais dans la suite on écrira seulement T ...
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où t 7→ A(t) est une application continue à valeurs dans L (Rd) et définie sur un intervalle I de
R.

Définition A (Résolvante). On appelle résolvante du système au point s ∈ I, notée
R(−; s) la solution (globale) de l’équation linéaire matricielle :{

X ′(t) = A(t)X(t)

X(s) = Id
(43)

Remarque : Bien que la variable soit ici matricielle, il s’agit bien d’une équation linéaire, et donc
le théorème de Cauchy-Lipschitz linéaire s’applique.

La résolvante sert à généraliser l’exponentielle de matrice, qui fournit la solution des systèmes
linéaires autonomes, au cas des coefficients variables :

Proposition B. La solution du problème de Cauchy :{
y′(t) = A(t)y(t)

y(s) = y0
(44)

est donnée par t 7→ R(t; s)y0.

Démonstration. C’est un calcul immédiat ! Posons y : t 7→ R(t; s)y0. Alors on trouve :

y′(t) = ∂1R(t; s)y0 = A(t)R(t; s)y0 = A(t)y(t) (45)

par définition de la résolvante. De plus :

y(s) = R(s; s)y0 = Idy0 = y0 (46)

□

Ceci va nous permettre d’utiliser la clause d’unicité du théorème de Cauchy-Lipschitz pour
montrer des propriétés sur la résolvante.

Proposition C (Equations de la résolvante). La résolvante satisfait les équations sui-
vantes :

1. ∀τ ∈ I, ∀(t, s) ∈ I2, R(t; τ)R(τ ; s) = R(t, s)

2. L’application (t, s) 7→ R(t; s) est continue.
3. ∀(t, s) ∈ I2, ∂1R(t, s) = A(t)R(t, s), ∂2R(t, s) = −R(t, s)A(s)

Démonstration.
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1. Soit y0 ∈ Rd. On considère, pour s ∈ I fixé, l’application u : t 7→ R(t; s)y0. On s’intéresse
alors au problème de Cauchy : {

y′(t) = A(t) · y(t)
y(τ) = u(τ)

(47)

Il est évident qque u est solution de ce problème de Cauchy. Mais on sait également, par
la proposition précédente, que la solution est donnée par :

y : t 7→ R(t; τ)u(τ) = R(t; τ)R(τ ; s)y0 (48)

Ainsi, par unicité de la solution :

∀t ∈ I, R(t; τ)R(τ ; s)y0 = R(t; s)y0 (49)

Comme c’est vrai pour tout y0 ∈ Rd, cette égalité se reporte sur les matrices :

∀(s, t) ∈ I2, R(t; τ)R(τ ; s) = R(t; s) (50)

2. Comme cas particulier de la formule précédente, on trouve :

∀(t, s) ∈ I2, R(t; s)R(s; t) = Id (51)

Comme par construction, l’application t 7→ R(t; s) est continue à s fixé, on trouve que
l’application s 7→ R(t; s) = R(s; t)−1 est continue par continuité de l’inverse matriciel.
Ainsi, pour (t0, s0) ∈ I2, et (t, s) ∈ I2, on trouve :

R(t; s) = R(t; t0)R(t0; s) −−−−−−−−→
(t,s)→(t0,s0)

R(t0; t0)R(t0; s0) = R(t0; s0) (52)

par continuité du produit matriciel. Donc la résolvante est bien continue comme application
de deux variables.

3. Enfin, par différentiabilité de l’inverse matriciel, l’application s 7→ R(t; s) = R(s; t)−1 est
différentiable. Ainsi, en partant de l’équation Id = R(t; s)R(s; t), on trouve :

0 = ∂s[R(t; s)R(s; t)] = ∂2R(t; s)R(s; t) +R(t; s)∂1R(s; t) (53)

et par définition de la résolvante, ∂1R(s; t) = A(s)R(s; t). Finalement :

∂2R(t; s)R(s; t) = −R(t; s)A(s)R(s; t) (54)

Il ne reste qu’à simplifier par R(s; t) (qui est inversible) pour obtenir l’équation souhaitée !
□

On conclut enfin avec la formule de Duhamel :

Théorème D (Formule de Duhamel). La solution au problème de Cauchy avec terme
source : {

y′(t) = A(t)y(t) + b(t)

y(t0) = y0
(55)

est donnée par :

t 7→ R(t; t0)y0 +

∫ t

t0

R(t; s)b(s)ds (56)
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RÉFÉRENCES RÉFÉRENCES

Remarques sur ce développement
Ce développement repose essentiellement sur du calcul différentiel en dimension infinie, ce qui

est théoriquement hors-programme à l’agreg. Ainsi, il faut être très carré sur le calcul différentiel
dans les espaces de Banach pour pouvoir le présenter. J’ai fait mon possible pour bien détailler
dans le poly, afin de rendre le raisonnement le plus compréhensible possible, mais je pense que
pour pouvoir faire rentrer ça en quinze minutes, il faudra passer plus vite sur les calculs, et donc
s’exposer à des questions de calcul différentiel, qui conduiront certainement à différentier des
fonctionnelles sur des espaces de fonctions.

La contrepartie de ça, c’est que si vous aimez le calcul diff, ce développement fournit une
très jolie (et très concrète !) application de la théorie dans les espaces de Banach abstraits, ce
qui justifiera de placer tout votre plan de leçon dans un cadre plus général que Rn (le dernier
rapport du jury l’écrit explicitement : c’est possible de tout faire dans les espaces de Banach à
condition d’avoir de vraies applications à proposer).

Par ailleurs, je pense que c’est un développement de très bon niveau qui se recase très bien
dans les quatre leçons que je propose (même équa diff linéaires à mon avis, vu qu’on utilise la
formule de Duhamel et la résolvante (penser à la mettre dans le plan le cas échéant)). Person-
nellement, j’ai horreur des équa diff et j’aime beaucoup le calcul diff, donc ce développement est
une petite pépite à mes yeux.

La référence est de notoriété publique difficile, et effectivement, tout ceci est fait de manière
très elliptique dedans. Au moins, on a toutes les étapes de calcul clairement indiquées, ce qui
évitera d’avoir à connaître chaque expression sur le bout des doigts, mais la preuve pour passer
d’une formule à une autre devra être parfaitement maîtrisée pour éviter les trous de mémoire.

Bon, voilà qui devrait suffire pour aujourd’hui !
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