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Théorème Le groupe Aut(Q8) est isomorphe à S4.

☞ Étape 0 : L’ordre de SL2(F3) est 24.
En effet, on a | GL2(F3)| = (32 − 1)(32 − 3) = 8 × 6 = 48, puis comme le déterminant det : GL2(F3) → (F3)∗ est
un morphisme surjectif, le premier théorème d’isomorphisme assure que GL2(F3)/ SL2(F3) ≃ (F3)∗. On en déduit
que | SL2(F3)| = | GL2(F3)|/|(F3)∗| = 48/2 = 24.

☞ Étape 1 : On s’intéresse à l’ordre des éléments de SL2(F3).
• Un élément d’ordre 2 annule le polynôme X2 − 1 (scindé à racines simples sur F3), donc est diagonalisable avec
des valeur propres dans {±1}. Ainsi, un élément d’ordre 2 de SL2(F3) est nécessairement −I2.
• Les éléments d’ordre 4 vérifient donc M2 = −I2 donc ont pour polynôme caractéristique X2 + 1. En particulier,

M est de trace nulle donc ∃α, β, γ ∈ F3 tels que 1+α2 +βγ = 0 et M =
(

α β
γ −α

)
. Inversemment, les matrices de

cette forme sont bien dans SL2(F3) et sont d’ordre 4. Il y a 3 choix possibles pour α, puis comme −βγ = 1+α2 ̸= 0,
il reste deux choix pour γ, et un seul pour β soit 6 éléments d’ordre 4.

• Si α ∈ (F3)∗ la matrice
(

1 α
0 1

)
et sa transposée sont manifestement d’ordre 3, donc il y a au moins 4 éléments

d’ordre 3 dans SL2(F3). Mais si on note n3 le nombre de 3-Sylow de SL2(F3), les théorèmes de Sylow assurent que
n3 ≡ 1[3] et que n3 | 8 donc n3 ∈ {1, 4}, d’où n3 = 4 vu le nombre d’éléments d’ordre 3 déjà trouvés. Il y a donc
8 éléments d’ordre 3 dans SL2(F3).
• En multipliant un élément d’ordre 3 par −I2, on trouve un élément d’ordre 6, d’où 8 éléments d’ordre 6.
À ce stade, il suffit de remarquer que 1 + 1 + 6 + 8 + 8 = 24 pour s’assurer qu’on a tous les éléments de SL2(F3).

☞ Étape 2 : Le groupe Q8 s’injecte dans SL2(F3), et Q8 est caractéristique dans SL2(F3).
L’unique 2-Sylow de SL2(F3) est un groupe non abélien d’ordre 8 qui n’a qu’un seul élément d’ordre 2, c’est donc
Q8. Maintenant, un automorphisme de SL2(F3) préserve l’ordre des éléments, donc Q8 est nécessairement envoyé
sur Q8 par l’étape précédente, et Q8 est bien caractéristique dans SL2(F3).

☞ Étape 3 : On montre que Aut(Q8) ≃ PGL2(F3).
Comme SL2(F3) est distingué dans GL2(F3), l’étape précédente assure que Q8 est distingué dans GL2(F3). Cela
permet de définir un morphisme φ : GL2(F3) → Aut(Q8) par ∀g ∈ GL2(F3), φ(g) est l’automorphisme intérieur
associé à g. Soit g ∈ ker(φ). Par définition, g commute avec tous les éléments de Q8. En particulier, g commute
avec les trois matrices

i =
(

0 1
−1 0

)
, j =

(
1 1
1 −1

)
et k = ij =

(
1 −1

−1 −1

)
qui forment clairement une base de l’hyperplan des matrices de trace nulle de M2(F3). Donc g commute avec les
matrices de trace nulle. Ainsi, si g′ ∈ GL2(F3), gg′ = g(g′ − (tr(g′)/2)I2) + g(tr(g′)/2)I2 = g′g car g′ − (tr(g′)/2)I2
est de trace nulle et (tr(g′)/2)I2 est scalaire. Notre élément g est donc dans le centre de GL2(F3), d’où g ∈ {±I2}.
Mais {±I2} ⊂ ker(φ), donc on obtient un morphisme injectif φ̃ : PGL2(F3) ↪→ Aut(Q8).
Remarquons que |PGL2(F3)| = 24 et qu’un automorphisme de Q8 est entièrement déterminé par l’image de ses
générateurs i et j, avec 6 choix pour l’image de i, puis 4 pour celle de j donc | Aut(Q8)| ⩽ 24. On a donc
nécessairement | Aut(Q8)| = 24 et Aut(Q8) ≃ PGL2(F3).

☞ Étape 4 : On montre que PGL2(F3) ≃ S4.
Ce résultat classique se montre en faisant agir GL2(F3) sur les 4 droites vectorielles de (F3)2 (faire un dessin et
écrire que si k est le nombre de droites, 2k + 1 = |(F3)2| = 9), d’où un morphisme θ : GL2(F3) → S4 dont le noyau
est {±I2} (matrices scalaires). En quotientant par le noyau, on obtient bien un isomorphisme entre PGL2(F3) et
S4 par injectivité et égalité des cardinaux.
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Remarques sur le développement :
• Il faut connaître la classification des groupes d’ordre 8, et avoir une idée de comment la démontrer.
• Savoir prouver les théorèmes de Sylow et donner des applications classiques est important.
• L’apparition d’un groupe spécial linéaire ne surprend pas, car on définit parfois Q8 comme un sous-groupe de SL2(C).
• On peut s’attendre à une question sur le comptage des sous-espaces vectoriels de dimension d ∈ {0, · · · , n} de (Fq)n.
• Il existe d’autres preuves de ce résultat. L’une d’elles utilise le fait que le groupe des automorphismes intérieurs
de Q8 est isomorphe à Q8/Z(Q8) ≃ (Z/2Z)2 = V , puis montre que Aut(Q8) est un produit semi direct de V par
Aut(V ) ≃ S3, et on conclut en expliquant qu’un tel produit semi-direct est isomorphe à S4. Une autre montre que
Aut(Q8) agit fidèlement sur l’ensemble X = {{x, −x} | x = {ε1i, ε2j, ε3k}, (ε1, ε2, ε3) ∈ {±1}3} qui a quatre éléments.

Les quatre droites vectorielles de (F3)2.
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