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I THEOREME Le groupe Aut(Qg) est isomorphe & Gy.

v Etape 0 : L’ordre de SLo(F3) est 24.
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En effet, on a | GLy(F3)| = (32 — 1)(3% — 3) = 8 x 6 = 48, puis comme le déterminant det : GLy(F3) — (F3)* est
un morphisme surjectif, le premier théoréme d’isomorphisme assure que GLy(F3)/SLa(F3) ~ (F3)*. On en déduit
que | SLa(F3)| = | GLo(F3)|/|(F3)*| = 48/2 = 24.

- Btape 1 : On s’intéresse a Uordre des éléments de SLa(F3).

e Un élément d’ordre 2 annule le polynéme X2 — 1 (scindé a racines simples sur F3), donc est diagonalisable avec
des valeur propres dans {£1}. Ainsi, un élément d’ordre 2 de SLy(F3) est nécessairement —Is.
o Les éléments d’ordre 4 vérifient donc M? = —1I, donc ont pour polynéme caractéristique X2 + 1. En particulier,
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M est de trace nulle donc 3o, 3,7y € F3 tels que 1+a?+3y=0et M = <7 . Inversemment, les matrices de

cette forme sont bien dans SLo(F3) et sont d’ordre 4. Il y a 3 choix possibles pour «, puis comme —f3y = 14+a? # 0,
il reste deux choix pour 7, et un seul pour g soit 6 éléments d’ordre 4.

e Si a € (F3)* la matrice et sa transposée sont manifestement d’ordre 3, donc il y a au moins 4 éléments
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d’ordre 3 dans SLz(FF5). Mais si on note ng le nombre de 3-Sylow de SLa(FF3), les théorémes de Sylow assurent que
ng = 1[3] et que ng | 8 donc n3 € {1,4}, d’ot ng = 4 vu le nombre d’éléments d’ordre 3 déja trouvés. Il y a donc
8 éléments d’ordre 3 dans SLq(FF3).

e En multipliant un élément d’ordre 3 par —I5, on trouve un élément d’ordre 6, d’ou 8 éléments d’ordre 6.

A ce stade, il suffit de remarquer que 1+ 1+ 6 + 8 + 8 = 24 pour s’assurer qu’on a tous les éléments de SL (F3).

Etape 2 : Le groupe Qg s’injecte dans SLy(Fs), et Qg est caractéristique dans SLy(Fs).

L’unique 2-Sylow de SLy(F3) est un groupe non abélien d’ordre 8 qui n’a qu’un seul élément d’ordre 2, c’est donc
Q5. Maintenant, un automorphisme de SLs(F3) préserve 'ordre des éléments, donc Qg est nécessairement envoyé
sur Qs par I'étape précédente, et Qg est bien caractéristique dans SLo(F3).

Etape 3 : On montre que Aut(Qg) ~ PGLy(F3).

Comme SLy(F3) est distingué dans GLz(FF3), I’étape précédente assure que Qg est distingué dans GLy(F3). Cela
permet de définir un morphisme ¢ : GLy(F3) — Aut(Qg) par Vg € GLy(F3), ¢(g) est automorphisme intérieur
associé a g. Soit g € ker(p). Par définition, g commute avec tous les éléments de Qg. En particulier, g commute

avec les trois matrices
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qui forment clairement une base de I’hyperplan des matrices de trace nulle de .#5(F3). Donc g commute avec les
matrices de trace nulle. Ainsi, si ¢’ € GLa(F3), g9’ = g(¢’ — (tr(¢’)/2) L) + g(tr(g')/2)Is = g'g car ¢’ — (tr(g’)/2) 1>
est de trace nulle et (tr(g’)/2)I2 est scalaire. Notre élément g est donc dans le centre de GLy(F3), d’ou g € {£1o}.
Mais {£I5} C ker(¢), donc on obtient un morphisme injectif ¢ : PGL2(F3) — Aut(Qs).

Remarquons que |PGLy(F3)| = 24 et qu'un automorphisme de Qg est entierement déterminé par 'image de ses
générateurs i et j, avec 6 choix pour I'image de i, puis 4 pour celle de j donc | Aut(Qs)| < 24. On a donc
nécessairement | Aut(Qg)| = 24 et Aut(Qg) ~ PGLy(F3).

Etape 4 : On montre que PGLy(F3) ~ &,.

Ce résultat classique se montre en faisant agir GL2(F3) sur les 4 droites vectorielles de (F3)? (faire un dessin et
écrire que si k est le nombre de droites, 2k +1 = |(F3)?| = 9), d’ott un morphisme 6 : GL2(F3) — &, dont le noyau
est {5} (matrices scalaires). En quotientant par le noyau, on obtient bien un isomorphisme entre PGLy(F3) et
&4 par injectivité et égalité des cardinaux.



Remarques sur le développement :

o I] faut connaitre la classification des groupes d’ordre 8, et avoir une idée de comment la démontrer.

e Savoir prouver les théoremes de Sylow et donner des applications classiques est important.

e L’apparition d’un groupe spécial linéaire ne surprend pas, car on définit parfois Qs comme un sous-groupe de SLy(C).
o On peut s’attendre & une question sur le comptage des sous-espaces vectoriels de dimension d € {0,--- ,n} de (F,)™.
e [l existe d’autres preuves de ce résultat. L’une d’elles utilise le fait que le groupe des automorphismes intérieurs
de Qg est isomorphe & Qg/Z(Qg) ~ (Z/2Z)* = V, puis montre que Aut(Qg) est un produit semi direct de V par
Aut(V) ~ &3, et on conclut en expliquant qu’un tel produit semi-direct est isomorphe & &4. Une autre montre que
Aut(Qsg) agit fideélement sur 'ensemble X = {{x, —x} | & = {1i, 24,3k}, (¢1,62,€3) € {£1}3} qui a quatre éléments.
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Les quatre droites vectorielles de (F3)?.



