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ALGORITHME DE BERLEKAMP
- 122, 123, 141, 142, 148 –

—

Lorsque K est un corps, on utilise fréquemment le fait que l’anneau K[X] est factoriel. Mal-
heureusement, calculer la décomposition d’un polynôme en produit d’irréductibles est un problème
généralement compliqué. Il se trouve que dans le cas où K est un corps fini, Berlekamp a dé-
couvert un algorithme qui permet de calculer cette décomposition pour n’importe quel polynôme
(de façon plus intelligente que de simplement tester tous les diviseurs potentiels). Cet algorithme
fournit au passage un test efficace d’irréductibilité qui ne nécessite que... le pivot de Gauss !

Dans ce développement, on va donner et étudier l’algorithme de Berlekamp pour des entrées
sans facteurs carrés (c’est déjà bien assez long comme ça). En annexe, j’ai ajouté un moyen de
traiter le cas général, et je pense qu’il est bon de le connaître pour l’oral, car c’est quand même
une question qui se pose tout naturellement.

Tout le développement est extrait de [1].

Soit p un nombre premier et q une puissance de p. On désigne par Fq un corps à q-éléments.
Etant donné P ∈ Fq[X], on notera ⟨P ⟩ l’idéal de Fq[X] engendré par P . Lorsque Q est un autre
polynôme, on notera Q

P
le projeté de Q dans Fq[X]

/
⟨P ⟩ . Notons qu’à chaque fois qu’on se

donnera un élément Q
P ∈ Fq[X]

/
⟨P ⟩ , on fixera implicitement un représentant Q ∈ Fq[X].

Un peu de contexte
Dans cette première partie, on va poser un certain nombre de notations et préciser le cadre

de travail qui va nous permettre d’étudier l’algorithme.

Soit P ∈ Fq[X] un polynôme, qu’on décompose en produit d’irréductibles :

P =

r∏
i=1

P νi
i (1)

Le lemme chinois fournit un isomorphisme de Fq-algèbres :

Φ : Fq[X]
/
⟨P ⟩︸ ︷︷ ︸

=:A

∼−→
r∏

i=1

Fq[X]
/
⟨P νi

i ⟩︸ ︷︷ ︸
=:Ai

Q
P 7→

(
Q

P
νi
i

)
1⩽i⩽r

Remarquons à ce stade qu’une Fq-algèbre est, par définition, un anneau A muni d’un mor-
phisme d’anneaux dit «structural» sA : Fq ↪→ A, injectif puisque Fq est un corps. Ceci permet
d’identifier Fq à sA(Fq), qui est un sous-corps de A, identification qui est très couramment faite
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dans ce contexte. Le danger ici est que l’on manipule plusieurs Fq-algèbres, et donc Fq serait
assimilé à des parties de différentes algèbres qui n’ont a priori rien à voir entre elles ! Comme on
va souvent tirer des éléments de sA(Fq) dans Fq par le morphisme structural, de sorte à pouvoir
les comparer avec d’autres éléments issus de l’image de Fq dans d’autres algèbres, on gardera
toujours la trace des morphismes structuraux. Cela occasionnera une certaine lourdeur dans les
notations, mais qui est justifiée par un gain de clareté non négligeable.

On remarque également que tout Fq-algèbre peut être munie d’un endomorphisme de Fq-
algèbre défini par le passe à la puissance q. On notera Frobq ce morphisme dans le cas de la
Fq-algèbre A.

Dans toute la suite, on utilisera les notations introduites ici.

L’algorithme
Je propose de présenter l’algorithme sans plus de contexte, d’une seule traite, afin d’avoir

chacune de ses étapes en tête. Tout ceci paraîtra obscure de prime abord, et c’est bien normal,
car il est sacrément astucieux ! La suite du développement consistera à en prouver la correction
et la terminaison.

Algorithme : Berlekamp
Entrée : P ∈ Fq[X] un polynôme sans facteurs carrés (i)

Sortie : La liste des facteurs irréductibles de P .

1. Calculer s la dimension du Fq-espace vectoriel Ker(Frobq −IdA)

2. Si s = 1, retourner P .

3. Sinon, prendre V
P ∈ Ker(Frobq −IdA) \ sA(Fq). Retourner :

{Berlekamp(pgcd(V − α, P )), α ∈ Fq | pgcd(V − α, P ) ̸= 1} (2)

Etude de l’algorithme
On va prouver d’un seul coup que l’algorithme est correcte est termine en étudiant chacune

de ses trois étapes.

Lemme 1. L’entier s est r le nombre de facteurs irréductibles de P .

Démonstration. Soit Q ∈ Fq[X]. On observe la suite d’équivalence suivante :[(
Q

P
)q

= Q
P
]

⇐⇒
[
Φ
(
Q

P
)q

= Φ
(
Q

P
)]

(3)

⇐⇒
[
∀i ∈ J1, rK,

(
Q

Pi
)q

= Q
Pi
]

(4)

⇐⇒
[
∀i ∈ J1, rK, Q

Pi ∈ sAi
(Fq)

]
(5)

(i). C’est-à-dire que tous ses facteurs irréductibles dans Fq [X] sont présents avec multiplicité 1.

Contactez-moi en cas de coquille à prénom.nom@ens-rennes.fr !



La dernière équivalence mérite explications. Comme les Pi sont irréductibles, les Fq-algèbres
Ai := Fq[X]

/
⟨Pi⟩ sont en réalité des extensions de corps de Fq. sAi

(Fq) est exactement l’en-

semble des points fixes du morphisme de Frobenius x 7→ xq (ii), ce qui justifie cette dernière
équivalence. Comme Φ est un isomorphisme de Fq-algèbres, c’est en particulier un isomorphisme
Fq-linéaire. Il induit donc un isomorphisme entre Ker(Frobq −IdA) et Φ(Ker(Frobq −IdA)) (ce
qui est la traduction de la première équivalence), et les dernières équivalences montrent qu’on a
l’isomorphisme de Fq-espaces vectoriels :

Φ(Ker(Frobq −IdA)) =

r∏
i=1

sAi
(Fq) ∼= Fr

q (6)

D’où l’espace propre Ker(Frobq −IdA) est un Fq-espace vectoriel de dimension r. □

Ainsi, l’étape 2 prend tout sons sens ! Si l’entier s calculé est 1, P a un unique facteur irré-
ductible, donc P est lui-même irréductible. Etudions la troisième étape.

On suppose que la troisième étape est atteinte, c’est-à-dire que r > 1. En conséquence,
Ker(Frobq −IdA) \ sA(Fq) est un ensemble non-vide. Soit V

P
l’un de ses éléments. On pose :

∀i ∈ J1, rK, αi := s−1
Ai

(V
Pi
) ∈ Fq

(iii) (7)

Lemme 2. ∏
α∈Fq

pgcd(V − α, P ) = P (8)

Démonstration. Considérons i ∈ J1, rK, α ∈ Fq et la suite d’équivalences :

[Pi|V − α] ⇐⇒ [V ≡ α(modPi)] (9)

⇐⇒
[
V

Pi
= sAi

(α)
]

(10)

⇐⇒ [α = αi] (11)

Ainsi, on a l’égalité :

∏
α∈Fq

pgcd(V − α, P ) =
∏
α∈Fq

r∏
i=1
αi=α

Pi (12)

=

r∏
i=1

Pi (13)

= P (14)

(ii). Tous les éléments de sAi
(Fq) sont de tels points fixes en vertu du théorème de Lagrange, et il ne peut y

avoir plus de q tels points fixes puisqu’il s’agit des racines de Xq −X, qui est de degré q.
(iii). Par définition de V

P , on a d’après le travail précédent que V
pi est un élément de la copie de Fq dans Ai.

Comme on va vouloir comparer tous ces éléments, on les tire en arrière par le morphisme structural pour récupérer
un élément de Fq .
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□

On est maintenant en passe de conclure ! Les facteurs (pgcd(V − α, P )) sont soit 1, soit un
produit des (Pi). Par ailleurs, pour tout i, Pi est facteur d’un et d’un seul terme de la forme
pgcd(V − α, P ). De plus, tous ces termes sont des diviseurs stricts de P , car :

pgcd(V − α, P ) = P ⇐⇒ P |V − α =⇒ V
P ∈ sA(Fq) (15)

donc le choix de V exclue ce cas. En d’autre termes, le nombre de facteurs irréductible de
pgcd(V −α, P ) est inférieur strict à r, ce pour tout α ∈ Fq. Il suit immédiatement que l’algorithme
termine, car à chaque appel récursif, le nombre de facteurs irréductibles du polynôme en entrée
diminue strictement. L’algorithme est par ailleurs correct : on peut le prouver par récurrence sur
r. Lorsque r = 1, l’algorithme s’arrête à l’étape 2 et renvoie la décomposition en irréductibles de
P . Si on suppose que r > 1 et que l’algorithme est correct pour toute entrée ayant au plus r− 1
facteurs irréductibles, alors par récurrence, l’algorithme renvoie la liste des facteurs irréductibles
de tous les (pgcdV − α, P )), qui à eux tous contiennent exactement les facteurs irréductibles de
P . Ceci achève l’étude de l’algorithme de Berlekamp !
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