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ALGORITHME DE BERLEKAMP
- 122, 123, 141, 142, 148 —

Lorsque K est un corps, on utilise fréquemment le fait que Uanneau K[X] est factoriel. Mal-
heureusement, calculer la décomposition d’un polynéme en produit d’irréductibles est un probléme
généralement compliqué. Il se trouve que dans le cas ou K est un corps fini, Berlekamp a dé-
couvert un algorithme qui permet de calculer cette décomposition pour n’importe quel polynome
(de fagon plus intelligente que de simplement tester tous les diviseurs potentiels). Cet algorithme
fournit au passage un test efficace d’irréductibilité qui ne nécessite que... le pivot de Gauss!

Dans ce développement, on va donner et étudier [’algorithme de Berlekamp pour des entrées
sans facteurs carrés (c’est déja bien assez long comme ¢a). En annezxe, j’ai ajouté un moyen de
traiter le cas général, et je pense qu’il est bon de le connaitre pour l'oral, car c’est quand méme
une question qui se pose tout naturellement.

Tout le développement est extrait de [1].

Soit p un nombre premier et ¢ une puissance de p. On désigne par I, un corps & g-éléments.
Etant donné P € F,[X], on notera (P) I'idéal de F,[X] engendré par P. Lorsque @ est un autre

polynéme, on notera @P le projeté de @ dans Fq [X] / (P) - Notons qu’a chaque fois qu’on se

donnera un élément @P e Fy[X] / (P), on fixera implicitement un représentant @ € I, [(X].

Un peu de contexte

Dans cette premiére partie, on va poser un certain nombre de notations et préciser le cadre
de travail qui va nous permettre d’étudier l’algorithme.

Soit P € F,[X] un polynéme, qu’on décompose en produit d’irréductibles :

P=TLP (1)
=1

Le lemme chinois fournit un isomorphisme de [ -algébres :

D : FQ[X]/<P> = ﬁFq[X]/<Piyi>

—_—— =] e e’
::A :'AL

Q"= (@)
1<igr

tx

Remarquons a ce stade qu'une F,-algébre est, par définition, un anneau A muni d’un mor-
phisme d’anneaux dit «structural» s4 : F, — A, injectif puisque F, est un corps. Ceci permet
d’identifier F, a s4(F,), qui est un sous-corps de A, identification qui est trés couramment faite
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dans ce contexte. Le danger ici est que 'on manipule plusieurs F,-algébres, et donc F, serait
assimilé & des parties de différentes algébres qui n’ont a priori rien & voir entre elles! Comme on
va souvent tirer des éléments de s4(F,) dans F, par le morphisme structural, de sorte & pouvoir
les comparer avec d’autres éléments issus de I'image de F, dans d’autres algebres, on gardera
toujours la trace des morphismes structuraux. Cela occasionnera une certaine lourdeur dans les
notations, mais qui est justifiée par un gain de clareté non négligeable.

On remarque également que tout Fj-algébre peut étre munie d’'un endomorphisme de F,-
algébre défini par le passe a la puissance g. On notera Frob, ce morphisme dans le cas de la
F,-algébre A.

Dans toute la suite, on utilisera les notations introduites ici.

L’algorithme

Je propose de présenter algorithme sans plus de contexte, d’une seule traite, afin d’avoir
chacune de ses étapes en téte. Tout ceci paraitra obscure de prime abord, et c’est bien normal,
car il est sacrément astucieux! La suite du développement consistera a en prouver la correction
et la terminaison.

Algorithme : Berlekamp

Entrée : P € F,[X] un polynome sans facteurs carrés @)
Sortie : La liste des facteurs irréductibles de P.

1. Calculer s la dimension du F;-espace vectoriel Ker(Frob, —Id.4)

2. Si s =1, retourner P.

3. Sinon, prendre v'e Ker(Froby —Id4) \ s4(Fg4). Retourner :

{Berlekamp(pgcd(V — o, P)), a € F, | pged(V — o, P) # 1} (2)

Etude de I’algorithme

On va prouver d’un seul coup que l'algorithme est correcte est termine en étudiant chacune
de ses trois étapes.

Lemme 1. L’entier s est r le nombre de facteurs irréductibles de P.

Démonstration. Soit @ € F,[X]. On observe la suite d’équivalence suivante :
@) 7] = [o(@) (@) o
— [w e [1,7], (@Pi)q zép"] (4)
— [viellr] Q" esa(F,)] (5)

(i). C’est-a-dire que tous ses facteurs irréductibles dans Fq[X] sont présents avec multiplicité 1.
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La derniére équivalence mérite explications. Comme les P; sont irréductibles, les F,-algébres
A; = FqlX] / (P;) sont en réalité des extensions de corps de Fy. s4,(Fg) est exactement l'en-

semble des points fixes du morphisme de Frobenius z — 29 ), ce qui justifie cette derniére
équivalence. Comme ® est un isomorphisme de [F -algébres, c’est en particulier un isomorphisme
F,-linéaire. Il induit donc un isomorphisme entre Ker(Frob, —Id4) et ®(Ker(Frob, —Id4)) (ce
qui est la traduction de la premiére équivalence), et les derniéres équivalences montrent qu’on a
I'isomorphisme de [Fj-espaces vectoriels :

®(Ker(Froby —Id.)) = [ [ 54, (Fy) = F; (6)
i=1
D’ou V'espace propre Ker(Frob, —Id.4) est un F,-espace vectoriel de dimension 7. O

Ainsi, I'étape 2 prend tout sons sens! Si 'entier s calculé est 1, P a un unique facteur irré-
ductible, donc P est lui-méme irréductible. Etudions la troisiéme étape.

On suppose que la troisiéme étape est atteinte, c’est-ad-dire que r > 1. En conséquence,
. .. P
Ker(Froby —Ida) \ s 4(F,) est un ensemble non-vide. Soit V° 'un de ses éléments. On pose :

Vi€ [1,r], a; =53 (V') € F, (9 (7)
Lemme 2.
I pecd(V—a,P)=P 8)
a€l,

Démonstration. Considérons i € [1,7], a € F, et la suite d’équivalences :

[PV — a] <= [V = a(modF;)] )
= [T =54 () (10)
—= |a= a4 (11)

Ainsi, on a égalité :

H pged(V —a, P) = H H P; (12)

o€k, acF, i=1
;=

11~ (13)
=1
_p (14)

(ii). Tous les éléments de 54, (F,) sont de tels points fixes en vertu du théoréme de Lagrange, et il ne peut y
avoir plus de ¢ tels points fixes puisqu’il s’agit des racines de X9 — X, qui est de degré q.

(iii). Par définition de V" , on a d’aprés le travail précédent que VP est un élément de la copie de Fq dans A;.
Comme on va vouloir comparer tous ces éléments, on les tire en arriére par le morphisme structural pour récupérer
un élément de Fy.
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On est maintenant en passe de conclure! Les facteurs (pged(V — «, P)) sont soit 1, soit un
produit des (P;). Par ailleurs, pour tout i, P; est facteur d'un et d’un seul terme de la forme
pged(V — a, P). De plus, tous ces termes sont des diviseurs stricts de P, car :

pged(V —a,P) =P <= PV —a = V' €s4(F,) (15)

donc le choix de V' exclue ce cas. En d’autre termes, le nombre de facteurs irréductible de
pged(V —a, P) est inférieur strict & r, ce pour tout o € Fy,. Il suit immeédiatement que I’algorithme
termine, car & chaque appel récursif, le nombre de facteurs irréductibles du polynéme en entrée
diminue strictement. L’algorithme est par ailleurs correct : on peut le prouver par récurrence sur
r. Lorsque r = 1, algorithme s’arréte a ’étape 2 et renvoie la décomposition en irréductibles de
P. Si on suppose que r > 1 et que 'algorithme est correct pour toute entrée ayant au plus r — 1
facteurs irréductibles, alors par récurrence, I’algorithme renvoie la liste des facteurs irréductibles
de tous les (pged V' — a, P)), qui & eux tous contiennent exactement les facteurs irréductibles de
P. Ceci achéve ’étude de 'algorithme de Berlekamp !
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