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RÉDUCTION DE FROBENIUS
- [148, 150, 151, 159] –

—

Dans ce développement, on va démontrer la classique théorème de réduction de Frobenius.
Il s’agit d’un résultat qui a d’importantes conséquences théoriques et qui répond au problème
de classifier toutes les orbites de matrices sous l’action de similitude du groupe linéaire, sans
aucune hypothèse sur le corps de base. On commencera par introduire la forme de Frobenius,
les invariants de similitude dont on démontrera l’existence et l’unicité, et on terminera par une
application intéressante qu’on peut faire de ce résultat.

Remarquez que le développement est extrêmement long. Je pense que vous pouvez traiter
uniquement l’existence à l’oral ou alors l’unicité et l’application selon la leçon présentée et/ou
vos affinités, mais que tout faire est déraisonnable.

Soient K un corps quelconque (i) et n un entier naturel non-nul. Etant donné un polynôme
P ∈ K[X] de degré n unitaire, qu’on note sous forme développée :

P = Xn +

n−1∑
i=0

aiX
i (1)

on note sa matrice compagnon :

CP :=


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

 (2)

Etant donné u un endomorphisme d’un K-espace vectoriel de dimension finie, on notera πu son
polynôme minimal. Si de plus x est un vecteur de l’espace sous-jacent, on note πu,x le polynôme
minimal de u en x, c’est-à-dire l’unique générateur unitaire de l’idéal :

{P ∈ K[X] | P (u)(x) = 0} (3)

(i). Dans eertains livres, comme le Rombaldi, le théorème de Frobenius suppose que le corps K est infini. Cette
hypothèse intervient pour la preuve d’un lemme qui est fondamental pour le développement : pour u ∈ L (E),
il existe un vecteur x ∈ E tel que le polynôme minimal en x de u soit égal au polynôme minimal. La preuve est
quasi immédiate si K est supposé infini, mais ce résultat reste vrai avec K quelconque. J’ai mis en annexe une
preuve qui fonctionne dans le cas général.
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Théorème 1 (Frobenius ([1], théorème B.2.1)). Soit E un K-espace vectoriel de
dimension n et soit u ∈ L (E). Il existe une suite (E1, . . . , Er) de sous-espaces vectoriels
de E tels que :

1. E =

r⊕
i=1

Ei

2. u stabilise chacun des Ei et y induit un endomorphisme cyclique.
3. La suite (P1, . . . , Pr) des polynômes minimaux des endomorphismes induits sur les

(Ei) est telle que Pr| . . . |P1

De plus, la suite de polynômes (Pi) ainsi définis est unique : on l’appelle suite des invariants
de similitudes de u.

Le théorème de Frobenius répond effectivement au problème de classification des orbites de
similitude de Mn(K) :

Corollaire 2. Deux matrices de Mn(K) sont semblables si, et seulement si, elles ont les
mêmes invariants de similitude.

Existence de la forme de Frobenius
On raisonne par récurrence sur n.

Pour n = 1, le résultat est évident : on prend r = 1, E1 = E et on a P1 = X − u(1) en
assimilant E à K.

Supposons le résultat acquis si la dimension de E est inférieure stricte à n. Dans ce
cas, soit x ∈ E \ {0} tel que πu,x = πu. On pose E1 l’espace cyclique engendré par u et x,
c’est-à-dire :

E1 := Vect(uk(x) | k ∈ N) (4)

Tout l’enjeu du développement est de trouver un supplémentaire de E1 stable par u pour
pouvoir y appliquer l’hypothèse de récurrence. Pour cela, on raisonne par dualité. Soit
(e1, . . . , ep) la base de E1 formée des ei := ui−1(x) avec p le degré du polynôme minimal
en x de u. On la complète en une base de E. Notons (e∗i ) la base duale ainsi obtenue. On
considère alors le sous-espace de E∗ :

G := Vect((uT )k(e∗p) | 0 ⩽ k ⩽ p− 1) (5)

G est stable par uT . En effet, pour 0 ⩽ k < p− 1, on a :

uT ((uT )k(e∗p)) = (eT )k−1(e∗p) ∈ G (6)

et pour k = p− 1, on utilise le fait que πu(u) = 0 et p est le degré de πu, donc up est une
combinaison linéaire des (uk)0⩽k⩽p−1. Il en découle immédiatement que uT ((uT )p−1(e∗p)) ∈
G.
Par ailleurs, G est de dimenion p. En effet, soient (λ1, . . . , λp) des scalaires tels que :

p∑
k=1

λk(u
T )k−1(e∗p) = 0 (7)
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Par l’absurde, on suppose que les (λi) ne sont pas tous nuls et on note r le plus grand
indice tel que λr ̸= 0. Alors :

0 =

[
r∑

k=1

λk(u
T )k−1(e∗p)

]
(up−r(x)) (8)

= e∗p(λr u
p−1(x)︸ ︷︷ ︸
=:ep

) + e∗p

(
r−1∑
k=1

(λk(u
k+p−r−1(x))

)
︸ ︷︷ ︸

=0 car k+p−r−1<p−1

(9)

= λr (10)

ce qui fournit une contradiction.
L’annulateur de G, qu’on note G◦, est donc un sous-espace de E de dimension n−p, stable
par u. Montrons que c’est un supplémentaire de E1. Par relation sur les dimensions, il suffit
de montrer que leur intersection est réduite à {0}. Soit z ∈ E1 ∩G◦. On décompose z sous
la forme :

z =

p∑
k=1

λku
k−1(x) (11)

et on suppose par l’absurde que z est non nul. En prenant encore une fois r le plus grand
indice tel que λr ̸= 0 et en appliquant (uT )p−r−1(e∗p) ∈ G à z, on obtient :

0 = λr
(ii) (12)

Ainsi, on peut appliquer l’hypothèse de récurrence à l’endomorphisme induit sur G◦ : il

existe une suite (E2, . . . , Er) de sous-espaces vectoriels de G◦ telle que G◦ =

r⊕
i=2

Ei et telle

que les polynôme minimaux des endomorphismes induits (qu’on appelle (Pi)) satisfont les
bonnes relations de divisibilité.

Attention, la preuve n’est pas encore terminée ! En effet, il n’y a a priori aucune
raison pour que P2|P1. Pour obtenir cette dernière relation, il faut remarquer que P1 = πu,x,
qui par construction est le polynôme minimal de u. Donc P1(u|E2

) = 0 et puisque P2 est
le polynôme minimal de u|E2

, on a bien P2|P1.

Unicité des facteurs invariants
Le raisonnement est classique : on se donne (F1, . . . , Fr) et (G1, . . . , Gs) deux suites de sous-

espaces vectoriels comme dans le théorème, et on note (P1, . . . , Pr) et (Q1, . . . , Qs) les polynômes
minimaux des endomorphismes induits. On note de plus, pour alléger la suite, (v1, . . . , vr) et
(w1, . . . , ws) les endomorphismes induits sur ces espaces. Par l’absurde, on suppose que les suites
(Pi) et (Qj) sont distinctes et on note i0 l’indice minimal tel que Pi0 ̸= Qi0

(iii). Comme les (Fi)

(ii). Moi aussi ça m’embête de faire deux fois exactement la même preuve mais je n’ai malheureusement pas
trouvé de moyen simple pour expliquer pourquoi cette deuxième preuve découle immédiatement de notre travail
précédent.
(iii). qui existe même si r ̸= s car

∑r
i=1 deg(Pi) =

∑s
j=1 deg(Qj) = n donc si r < s et les (Pi) sont les r-premiers

(Qj), par égalité sur les degrés, les (Qj) restants sont des constantes non nulles, ce qui est absurde car ce sont
des polynômes minimaux.

Contactez-moi en cas de coquille à prénom.nom@ens-rennes.fr !



et les (Gj) sont stables par u, ils sont stables par tout polynôme en u. En particulier :

Pi0(u)(E) =

r⊕
i=1

Pi0(u)(Ei) =

s⊕
j=1

Pi0(u)(Fj) (13)

et comme, pour i, j > i0, les polynômes minimaux des endomorphismes induits par u sur Ei et
Fj divisent Pi0 , on a :

∀i, j > i0, {0} = Pi0(Ei) = Pi0(Fj) (14)

et cette égalité reste vraie pour i = i0. Ainsi :

Pi0(u)(E) =

i0−1⊕
i=1

Pi0(u)(Ei) = Pi0(Gi0)⊕
i0−1⊕
j=1

Pi0(u)(Fj) (⋆)

Utilisons maintenant le fait que les (vi) et les (wj) sont cycliques : ils sont donc représentés
dans une certaine base par la matrice compagnon de leurs polynômes minimaux respectifs. En
particulier, pour i < i0, vi et wi sont représentés par une même matrice ; de même donc pour
Pi0(vi) et Pi0(wi). Ceci implique que ces endomorphismes ont même rang, et donc on a :

∀i < i0, dim(Pi0(u)(Fi)) = dim(Pi0(u)(Gi)) (15)

On passe alors à la dimension dans (⋆) et on montre :

dim(Pi0(u)(Gi0) = · · · = dim(Pi0(u)(Gs) = 0 (16)

et donc Pi0 annule wi0 , ce qui implique qu’il est divisé par son polynôme minimal Qi0 .
Le raisonnement étant symétrique en les (Pi) et les (Qj), on obtient de même que Pi0 |Qi0 et

donc ces polynômes sont égaux, ce qui prouve l’unicité des invariants de similitude !

Réponse au problème de classification
On va maintenant démontrer le corollaire, bien que je pense que cette partie puisse être passée

à l’oral si vous regardez bien le jury dans les yeux, parce qu’elle se résume franchement à un jeu
d’écriture.

Soient A et B dans Mn(K). Le théorème de Frobénius affirme qu’il existe des bases B1 et B2

de Kn dans lesquelles les matrices des endomorphismes canoniquement associés à A et B sont :
CP1 0 0 . . . 0
0 CP2 0 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . CPr

 et


CQ1 0 0 . . . 0
0 CQ2 0 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . CQs

 (17)

où les (Pi) et (Qj) sont les invariants de similitude respectifs de A et de B. Il est donc clair que
si A et B sont semblables si, et seulement si, elles ont les mêmes invariants.

Une application
Une conséquence théorique intéressante de ce résultat est la suivante :
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Proposition 3. Soit L/K une extension de corps et soit A et B deux matrices carrées de
taille n à coefficients dans K. Les assertions suivantes sont équivalentes :

1. A et B sont K-semblables.
2. A et B sont L-semblables.

Démonstration. Supposons qu’il existe P une matrice carrée inversible à coefficients dans L telle
que P−1AP = B. Ceci implique que A et B ont les mêmes invariants de similitude en tant que
matrices de Mn(L). Mais les invariants de similitude à coefficients dans K satisfont les hypothèses
du théorème de Frobenius lorsqu’on plonge A et B dans Mn(L) : par unicité, les invariants de
similitude de A et B vues comme éléments de Mn(K) sont identiques, et donc A et B sont
semblables dans Mn(K). □

Annexe
Comme je l’indiquais plus haut, certains livres supposent le corps K infini pour faciliter

la preuve d’un lemme qu’on a utilisé plus haut. Afin que la preuve soit complète, j’ajoute une
démonstration de ce lemme dans le cas général, car je pense qu’il est important de la connaître
si on veut traiter le théorème de Frobenius dans toute sa généralité.

Lemme 4 ([1], chapitre IV, paragraphe 2, exercice 3). Soit u ∈ L (E). Il existe
x ∈ E tel que πu,x = πu.

Démonstration. Etudions d’abord le cas où πu est une puissance d’un polynôme irréductible dans
K[X], qu’on note P . On a alors πu = Pα. Comme on a toujours, pour tout x ∈ E, πu,x|πu, il
existe un entier β(x) tel que πu,x = P β(x). Il est alors assez immédiat de remarquer :

α = max
x∈E

β(x) (18)

où le maximum est justifié car β est à valeurs dans une partie finie de N. Donc il existe x tel que
β(x) = α, c’est-à-dire tel que πu,x = πu.

Dans le cas général, décomposons πu en produit d’irréductibles :

πu =

r∏
i=1

Pαi
i (19)

On utilise alors le lemme des noyaux et le fait que πu(u) = 0 :

E =

r⊕
i=1

Ker(Pαi
i (u)) (20)

Pour i ∈ J1, rK, notons ui l’endomorphisme induit sur Ker(Pαi
i (u)). On montre facilement que

le polynôme minimal de ui est Pαi
i , donc on se rammène au cas précédent. Il existe donc xi ∈

Ker(Pαi
i (u)) tel que πui,xi

= πui
.
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On pose alors x = x1 + · · ·+ xr. On a alors, pour Q ∈ K[X] :

Q(u)(x) = 0 ⇐⇒
r∑

i=1

Q(ui)(xi) = 0 (21)

⇐⇒ ∀i ∈ J1, rK, Q(ui)(xi) = 0 (iv) (22)
⇐⇒ ∀i ∈ J1, rK, Pαi

i |Q (23)
⇐⇒ πu|Q (24)

ce qui prouve que πu,x = πu. □

Le mot de la fin
Quelques remarques peut-être sur ce développement !
• Il s’agit d’un résultat de réduction qui fournit une "forme normale" pour n’importe quelle

matrice. Malheureusement, la forme de Frobenius a le mauvais goût de ne pas coïncider
avec les autres formes normales lorsque celles-ci existent. Par exemple, si A est diagonali-
sable, sa forme de Frobenius peut ne pas être diagonale, et la diagonalisabilité ne se lit pas
directement sur la forme de Frobenius (contrairement à la forme de Jordan).

• En contrepartie, la forme de Frobenius se calcule explicitement via un algorithme. Je ne
sais pas s’il est à connâitre, mais a priori le jury peut demander des calculs explicites de
facteurs invariants, d’après ce que j’ai pu lire à droite à gauche. L’algo général est celui qui
permet de calculer la forme de Smith d’une matrice à coefficients dans un anneau euclidien.
A ce propos...

• ...peut-être aurez-vous remarqué une étonnante similitude entre ce théorème et le théorème
de structure des groupes abéliens finis (il existe une unique suite d’entiers dr| . . . |d1, etc.) :
ce n’est pas un hasard ! Ces deux théorèmes sont en fait des cas particuliers du théorème de
structure des modules de type fini sur un anneau principal, qu’on peut voir comme corollaire
de la forme de Smith des matrices à coefficients dans un anneau principal. Bien sûr, tout
ceci est hors-programme à l’agreg, mais si ce point de vue vous intéresse (et c’est bien
normal !), je trouve que le polycopié de Matoumatheux à ce sujet est une bonne première
approche qui reste proche en un sens de l’agreg, et dans lequel se trouvent de plus amples
références : [2].
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(iv). Car Q(u) stabilise la somme directe en espaces caractéristiques.
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