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REDUCTION DE FROBENIUS
- [148, 150, 151, 159] —

Dans ce développement, on va démontrer la classique théoréeme de réduction de Frobenius.
1l s’agit d’un résultat qui a d’importantes conséquences théoriques et qui répond au probléme
de classifier toutes les orbites de matrices sous l'action de similitude du groupe linéaire, sans
aucune hypothése sur le corps de base. On commencera par introduire la forme de Frobenius,
les invariants de similitude dont on démontrera ’existence et l'unicité, et on terminera par une
application intéressante qu’on peut faire de ce résultat.

Remarquez que le développement est extrémement long. Je pense que vous pouvez traiter
uniquement l’existence a loral ou alors lunicité et application selon la legon présentée et/ou
vos affinités, mais que tout faire est déraisonnable.

Soient K un corps quelconque () et n un entier naturel non-nul. Etant donné un polynéme
P € K[X] de degré n unitaire, qu’on note sous forme développée :

n—1
P=X"+) aX' (1)
i=0
on note sa matrice compagnon :
00 ... 0 —ap
1 0 ... 0 —ay
Cp = 01 ... 0 —ae (2)
00 ... 1 —Aan—1

Etant donné u un endomorphisme d’'un K-espace vectoriel de dimension finie, on notera 7, son
polynéme minimal. Si de plus = est un vecteur de I’espace sous-jacent, on note 7, , le polynéme
minimal de u en x, c’est-a-dire 'unique générateur unitaire de l’idéal :

{P e K[X]| P(u)(z) = 0} 3)

(i). Dans eertains livres, comme le Rombaldi, le théoréme de Frobenius suppose que le corps K est infini. Cette
hypothése intervient pour la preuve d’un lemme qui est fondamental pour le développement : pour u € Z(FE),
il existe un vecteur = € E tel que le polynéme minimal en =z de u soit égal au polynéme minimal. La preuve est
quasi immeédiate si K est supposé infini, mais ce résultat reste vrai avec K quelconque. J’ai mis en annexe une
preuve qui fonctionne dans le cas général.
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Théoréme 1 (Frobenius ([1], théoréme B.2.1)). Soit E un K-espace vectoriel de
dimension n et soit uw € L (E). Il existe une suite (En,...,E,) de sous-espaces vectoriels
de E tels que :

T
1. E= @ E;
i=1
2. u stabilise chacun des E; et y induit un endomorphisme cyclique.
3. La suite (Py,...,P.) des polynomes minimaux des endomorphismes induits sur les
(E;) est telle que Py|...|Py

De plus, la suite de polynomes (P;) ainsi définis est unique : on ’appelle suite des invariants
de similitudes de u.

Le théoréme de Frobenius répond effectivement au probléme de classification des orbites de
similitude de M,,(K) :

Corollaire 2. Deux matrices de M,,(K) sont semblables si, et seulement si, elles ont les
mémes invariants de similitude.

Existence de la forme de Frobenius

On raisonne par récurrence sur n.

Pour n = 1, le résultat est évident : on prend r = 1, B} = F et ona P, = X —u(l) en
assimilant F a K.

Supposons le résultat acquis si la dimension de E est inférieure stricte a4 n. Dans ce
cas, soit z € E'\ {0} tel que 7, , = m,. On pose E; l'espace cyclique engendré par u et x,
c’est-a-dire :

E, := Vect(u®(z) | k € N) (4)
Tout I’enjeu du développement est de trouver un supplémentaire de E; stable par u pour
pouvoir y appliquer 'hypothése de récurrence. Pour cela, on raisonne par dualité. Soit
(e1,...,ep) la base de E; formée des e; := u'~'(x) avec p le degré du polynéme minimal
en = de u. On la compléte en une base de E. Notons (e) la base duale ainsi obtenue. On
consideére alors le sous-espace de E* :

G = Vect((uT)*(e) |0<k<p—1) (5)

P

G est stable par u”. En effet, pour 0 <k <p—1,ona:
u (W) (ep)) = (") Hey) € G (6)

P p

et pour k = p — 1, on utilise le fait que 7, (u) = 0 et p est le degré de m,, donc u” est une
combinaison linéaire des (u*)o<r<p—1- Il en découle immédiatement que uT((uT)p_l(e;)) €

G.

Par ailleurs, G est de dimenion p. En effet, soient (\1,...,\,) des scalaires tels que :

Y @) ep) =0 (7)
k=1
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Par I’absurde, on suppose que les ();) ne sont pas tous nuls et on note r le plus grand
indice tel que A, # 0. Alors :

0= [Z /\k(uT)’“_l(GZ)l (u"™" (2)) ®)
k=1

— e* upfl T e* = ukerfrfl x
=e,(Ar _ (7)) +e, (;(Ak( ( ))) (9)

=:ep

=0 car k+p—r—1<p—1
=\ (10)

ce qui fournit une contradiction.

L’annulateur de G, qu’on note G°, est donc un sous-espace de F de dimension n — p, stable
par u. Montrons que c’est un supplémentaire de E;. Par relation sur les dimensions, il suffit
de montrer que leur intersection est réduite a {0}. Soit z € E; N G°. On décompose z sous
la forme :

=Y M (@) (11)
k=1

et on suppose par l'absurde que z est non nul. En prenant encore une fois r le plus grand
indice tel que A, # 0 et en appliquant (uT)p_T_l(e;) € G A z, on obtient :

0=\, (12)

Ainsi, on peut appliquer I’hypothése de récurrence & 'endomorphisme induit sur G° : il

T
existe une suite (Es, ..., E,.) de sous-espaces vectoriels de G° telle que G° = @ E; et telle
=2

que les polynome minimaux des endomorphismes induits (qu’on appelle (P;)) satisfont les
bonnes relations de divisibilité.

Attention, la preuve n’est pas encore terminée! En effet, il n’y a a priori aucune
raison pour que P |P;. Pour obtenir cette derniére relation, il faut remarquer que Py = m, 4,
qui par construction est le polynéme minimal de u. Donc Pi(ug,) = 0 et puisque P, est
le polynéme minimal de u|g,, on a bien P|P;.

Unicité des facteurs invariants

Le raisonnement est classique : on se donne (Fi, ..., F;) et (Gy,...,G;) deux suites de sous-
espaces vectoriels comme dans le théoréme, et on note (Pi,..., P.) et (Q1,...,Qs) les polynomes
minimaux des endomorphismes induits. On note de plus, pour alléger la suite, (vy,...,v,) et
(w1, ..., ws) les endomorphismes induits sur ces espaces. Par ’absurde, on suppose que les suites
(P;) et (Q,) sont distinctes et on note o I'indice minimal tel que P;, # Q;, . Comme les (F})

(ii). Moi aussi ga m’embéte de faire deux fois exactement la méme preuve mais je n’ai malheureusement pas
trouvé de moyen simple pour expliquer pourquoi cette deuxiéme preuve découle immeédiatement de notre travail
précédent.

(iif). qui existe méme sir # s car 357, deg(P;) = >7_; deg(Q;) = n donc si r < s et les (P;) sont les r-premiers

i), par égalité sur les degrés, les i) restants sont des constantes non nulles, ce qui est absurde car ce son
F égalité sur les degrés, les (Q;) restant t d tant 11 i est absurd t
des polyndémes minimaux.
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et les (G;) sont stables par u, ils sont stables par tout polynéme en u. En particulier :
Py, (u)(E) = D Piy (u)(E:) = €D Py () () (13)
i=1 j=1

et comme, pour ¢,j > ig, les polynémes minimaux des endomorphismes induits par u sur E; et
F}; divisent P;;, on a :

\V/Z,j>lo, {O}ZPW(El):Pl (F]) (14)
et cette égalité reste vraie pour ¢ = ig. Ainsi :

io—1 io—1

Py, (u)(E) = @ Piy(u)(E;) = P (Giy) ® @ Py (u)(Fy) (*)

Utilisons maintenant le fait que les (v;) et les (w;) sont cycliques : ils sont donc représentés
dans une certaine base par la matrice compagnon de leurs polyndmes minimaux respectifs. En
particulier, pour ¢ < ig, v; et w; sont représentés par une méme matrice; de méme donc pour
Pi,(v;) et Py, (w;). Ceci implique que ces endomorphismes ont méme rang, et donc on a :

Vi < ig, dim(P;,(u)(F;)) = dim(P;, (u)(G;)) (15)
On passe alors a la dimension dans (%) et on montre :
dim(Py, (u)(Giy) = - - = dim(Py, (u)(Gs) = 0 (16)

et donc P;, annule w;,, ce qui implique qu’il est divisé par son polynéme minimal Q);,.
Le raisonnement étant symétrique en les (P;) et les (Q;), on obtient de méme que P; |Q;, et
donc ces polynémes sont égaux, ce qui prouve l'unicité des invariants de similitude !

Réponse au probléme de classification

On va maintenant démontrer le corollaire, bien que je pense que cette partie puisse étre passée
a loral si vous regardez bien le jury dans les yeuz, parce qu’elle se résume franchement o un jeu
d’écriture.

Soient A et B dans M, (K). Le théoréme de Frobénius affirme qu’il existe des bases %, et %,
de K" dans lesquelles les matrices des endomorphismes canoniquement associés & A et B sont :

Cp, 0 0 ... 0 Co, 0 0 ... 0
0 Cp 0 ... 0 0 C 0o ... 0
o e | (17)
0 0 0 .. Cp 0 0 0 .. Co.

ot les (P;) et (Q;) sont les invariants de similitude respectifs de A et de B. Il est donc clair que
si A et B sont semblables si, et seulement si, elles ont les mémes invariants.

Une application

Une conséquence théorique intéressante de ce résultat est la suivante :
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Proposition 3. Soit L/K une extension de corps et soit A et B deux matrices carrées de
taille n a coefficients dans K. Les assertions suivantes sont équivalentes :

1. A et B sont K-semblables.
2. A et B sont L-semblables.

Démonstration. Supposons qu’il existe P une matrice carrée inversible & coefficients dans L telle
que P~1AP = B. Ceci implique que A et B ont les mémes invariants de similitude en tant que
matrices de M, (L). Mais les invariants de similitude a coefficients dans K satisfont les hypothéses
du théoréme de Frobenius lorsqu’on plonge A et B dans M, (L) : par unicité, les invariants de
similitude de A et B vues comme éléments de M, (K) sont identiques, et donc A et B sont
semblables dans M, (K). O

Annexe

Comme je lindiquais plus haut, certains livres supposent le corps K infini pour faciliter
la preuve d’un lemme qu’on a utilisé plus haut. Afin que la preuve soit compléte, j’ajoute une
démonstration de ce lemme dans le cas général, car je pense qu’il est important de la connaitre
st on veut traiter le théoréme de Frobenius dans toute sa généralité.

Lemme 4 ([1], chapitre IV, paragraphe 2, exercice 3). Soit u € Z(E). Il existe
x € E tel que Ty p = my.

Démonstration. Etudions d’abord le cas ou 7, est une puissance d’un polynéme irréductible dans
K[X], qu’on note P. On a alors m, = P. Comme on a toujours, pour tout € E, my 4|m,, il
existe un entier 5(z) tel que m, , = PA@) 11 est alors assez immédiat de remarquer :
= ma 18

o = max f(z) (18)
ou le maximum est justifié car 8 est & valeurs dans une partie finie de N. Donc il existe x tel que
B(z) = «, cest-a-dire tel que 7y 5 = my.

Dans le cas général, décomposons 7, en produit d’irréductibles :

r

mo= [ B (19)

=1

On utilise alors le lemme des noyaux et le fait que m,(u) =0 :

E = P Ker(P{ (u)) (20)

i=1

Pour ¢ € [1,r], notons u; 'endomorphisme induit sur Ker(P;*(u)). On montre facilement que
le polynéme minimal de u; est P, donc on se rammeéne au cas précédent. Il existe donc z; €
Ker(P (u)) tel que my, 4, = Ty

e
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On pose alors ¢ = x1 + - - + . On a alors, pour Q € K[X] :

Qu)(x) =0 <= Y Q(uw)(w;) =0 (21)
i=1
— Vie[l,r], Qu)(z;) =00 (22)
= Vie[l,r], P|Q (23)
= m|Q (24)
ce qui prouve que T, g, = Ty. O

Le mot de la fin

Quelques remarques peut-étre sur ce développement !

o [l s’agit d’un résultat de réduction qui fournit une "forme normale” pour n’importe quelle

matrice. Malheureusement, la forme de Frobenius a le mauvais gott de ne pas coincider
avec les autres formes normales lorsque celles-ci existent. Par exemple, si A est diagonali-
sable, sa forme de Frobenius peut ne pas étre diagonale, et la diagonalisabilité ne se lit pas
directement sur la forme de Frobenius (contrairement a la forme de Jordan).

En contrepartie, la forme de Frobenius se calcule explicitement via un algorithme. Je ne
sais pas s’il est a connditre, mais a priort le jury peut demander des calculs explicites de
facteurs invariants, d’apres ce que j’ai pu lire & droite a gauche. L’algo général est celui qui
permet de calculer la forme de Smith d’une matrice a coefficients dans un anneau euclidien.
A ce propos...

...peut-étre aurez-vous remarqué une étonnante similitude entre ce théoréme et le théoréme
de structure des groupes abéliens finis (il existe une unique suite d’entiers d,|...|d;, etc.) :
ce n'est pas un hasard! Ces deux théorémes sont en fait des cas particuliers du théoréme de
structure des modules de type fini sur un anneau principal, qu’on peut voir comme corollaire
de la forme de Smith des matrices a coefficients dans un anneau principal. Bien sir, tout
ceci est hors-programme a l'agreg, mais si ce point de vue vous intéresse (et c’est bien
normal!), je trouve que le polycopié de Matoumatheuz & ce sujet est une bonne premiére
approche qui reste proche en un sens de l’agreg, et dans lequel se trouvent de plus amples
références : [2].
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(iv).

Car Q(u) stabilise la somme directe en espaces caractéristiques.
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