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CYCLOTOMIE
- 102, 104, 121, 123, 127, 141, 120, 125 —

Ce développement est modulaire : il contient trop de choses pour étre présenté tel quel. On
peut prendre les parties les plus intéressantes pour la lecon en cours et admettre le reste, mais il
s’apprend bien comme un seul bloc uni.

J’ai décomposé ce document en quatre parties, les trois derniéres étant indépendantes :

1. En premier lieu, on montre plusieurs résultats préliminaires, essentiels pour manipuler
les polyndomes cyclotomiques, mais qui peuvent étre simplement énoncés dans le plan pour
gagner du temps et faire des choses plus poussées en développement.

2. On prouve ensuite lirréductibilité des polynémes cyclotomiques dans Q[X]. Indispensable
pour la 102 mais peut ne pas étre mis en avant dans d’autres lecons, par exemple la 121,
la 128 ou la 125.

3. On applique ’étude des polynémes cyclotomiques a la démonstration d’une version faible
du théoréeme de progression arithmétique de Dirichlet. Un must have pour la 121!

4. Dans la derniére partie, on €tudie la réductibilité des polynomes cyclotomiques & coefficients
dans les corps finis. Cette partie est certainement la plus délicate, mais elle est plus originale
que le travail dans Q[X]. Elle me semble parfaite pour la 123, la 141 et dans une moindre
mesure, la 120.

Soit K un corps et n un entier. Dans toute la suite, on fixe L un corps de décomposition
du polynéme X" — 1. On pose p,(K) le groupe des racines n-iémes de l'unité dans L et p) (K)
celui des racines n-iémes primitives de 'unité, c’est-a-dire les éléments d’ordre n dans le groupe
tn(K). On définit alors le n-iéme polynéme cyclotomique a coefficients dans L :

ooii= ] (X-w)eLlX] (1)
weps, (K)

Généralités sur les polynomes cyclotomiques ([2], section VI.1)

Cette section contient un certain nombre de résultats préliminaires indispensables a connaitre
pour la suite mais qui peuvent étre admis ou pas selon le temps et la lecon présentée.

Lemme 1 (Une relation de récurrence). On suppose que la caractéristique de K ne
divise pas n. Alors :

Xn_lZH(I)d,K (2)
d|n

Démonstration. Le polynéme X™ — 1 est séparable car il ne partage aucune de ses racines dans
L avec son polynome dérivé n X" ! # 0@ 1l est donc a racines simples dans L. Par le théoréme

(i). Ce polynome est non nul car n n’est pas divisé par la caractéristique de K.
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de Lagrange :

et donc :

I Il &x-w (5)

dln wep(K)

=[[®ax (6)
d|n

Lemme 2.
D, 0 € Z[X]

Démonstration. On procéde par récurrence forte sur n. Si n = 1, alors @, 9 = X — 1 € Z[X].
Supposons donc n > 2 et que tous les polyndmes cyclotomiques d’ordre inférieur strict & n sont a
coefficients entiers. Alors, d’apreés le lemme 1, X" —1 = ®,, o P ou P € Z[X]. On peut voir cette
écriture comme celle d’une divison euclidienne dans L[X]. Mais alors, comme P est unitaire dans
Z[X], on peut également faire la division euclidienne de X™ — 1 par P :

X"—-1=QP+R, deg(R) < deg(P) (7)
Comme il s’agit également d’une division euclidienne dans L[X], on peut conclure par unicité :

R=0, Q=®,0 € Z[X] 0

Remarque : Par la méme preuve, on prouve que ®, x € Fy[X] si K est de caractéristique p
premiére.

Lemme 3. Si K est de caractéritique p > 0, et si n est premier avec p, alors :

@k =Py (8)

c’est-a-dire que O, x est obtenu en projetant les coefficients (entiers) de ®, ¢ dans Fy.

Démonstration. On procéde encore une fois par récurrence en utilisant le lemme 1. Pour n = 1,
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c’est clair. Supposons n > 2 et que pour tout d|n, d < n le résultat est acquis () Alors :

Xn—-1=®, g H Dy K
dln
d#n

=®, K H D40

d|n
d#n

=0 [[ Pao
dln
d#n
=0 ][] ®ac

d|n
d#n

Il ne reste qu’a simplifier par H D40.

d|n
d#n

(lemme 1 dans K)

(hypothése de récurrence)

(lemme 1 dans Q)

Irréductibilité sur Q (|2], théoréme VI.11)

Nous allons montrer dans cette partie le trés classique :

Théoréme 4 (Irréductibilité dans Q[X]). ®,, ¢ est irréductible dans Q[X] et dans Z[X].

Soit f un diviseur irréductible unitaire de ®,, ¢ dans Q[X]. On va montrer que f = ®,, g en

montrant que ces deux polynoémes ont les mémes racines complexes.
On a f|X™ — 1. Notons h € Q[X] tel que fh = X" — 1.

Lemme 5.

Démonstration. Comme X" — 1 et f sont unitaires, h lest également. Soit r € N* tel que
rf € Z[X]. Notons alors r’ le pged des coefficients de rf. Comme f est unitaire, 7’|r et donc

r r! Lo . A . .
— f € Z[X] est de contenu 1 avec — € Z. Notons cet entier 7. On fait de méme avec h : il existe
r

T
G un entier tel que gh soit a coefficients entiers et de contenu 1. On a alors :

Fg(X" = 1) = (7f)(qh)

En appliquant le contenu (qui est multiplicatif) a cette égalité, on obtient :

Dou 7 =G =1et f € Z[X],h e ZX].

(ii). Si n est premier avec p, c’est également le cas de tous ses diviseurs.
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Ce résultat va nous permettre de projeter nos égalités dans F,[X] par la suite.

Soit w une racine complexe de f. Pour montrer f = ®,, g, il suffit de montrer que si m est
un entier premier avec n, alors w™ est encore racine de f, car dans ce cas ces deux polyndmes
auront les mémes racines. On peut encore réduire le probléme en montrant que pour tout p un
nombre premier ne divisant pas n, alors w? est racine de f. En le montrant pour toute racine w,
on aura bien que w" est encore racine de f si m est premier avec n. On a :

0= ()" 1= f(w)h(w") (15)

Par Pabsurde, on suppose f(w?) # 0. Alors h(w?) = 0. Puisque f est irréductible et unitaire sur
Q, c’est le polynéme minimal de w et donc on a :

FIR(X) ie. 3 € QIX] : h(XP) = fg (16)

Remarquons que cette égalité pouvant étre vue comme une division euclidienne dans Q[X], on
obtient immédiatement que g € Z[X] en effectuant la méme division euclidienne dans Z[X]. On
peut donc projeter I'égalité dans F,[X] :

fg =h(X?) = h(X)" (17)

Soit alors 6 € F,[X] un diviseur irréductible de f. Alors :

O|n* = 6|h (18)
Orona: B
X"—1=fh (19)
Donc :
02X —1 (20)

ce qui est absurde car n étant premier avec p, X" — 1 est séparable dans F,[X] et ses facteurs
irréductibles sont donc simples. En remontant le file des arguments, on a bien montré que ®,, ¢ =
f et donc que les polynémes cyclotomiques sont tous irréductibles sur Q!

Pour l'irréductibilité dans Z[X], il suffit d’utiliser le fait que ces polyndmes sont unitaires,
donc de contenu 1.

Corollaire 6. L/Q est une extension de degré p(n), ot p désigne Uindicatrice d’Euler.

Théoréme de Dirichlet faible (|2], proposition VII.13)

Les polynéems cyclotomiques vont nous permettre de démontrer une version faible du théoréme
de progression arithmétique de Dirichlet.

Théoréme 7 (Dirichlet faible). La suite (An + 1)xen contient une infinité de nombres
premiers. En d’autres termes, il existe une infinité de nombres premiers congrus a 1 modulo
n.

(iii). On utilise le fait que le morphisme de Frobenius s’étend en un morphisme d’anneaux sur Fp[X] laissant
stable les éléments de [Fp,.
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L’énoncé est impliqué par le suivant : pour tout entier N > n, il existe une nombre premier
p = N congru a 1 modulo n. La cyclotomie va fournir un candidat astucieux en exploitant le
lemme suivant :

Lemme 8. Soit a € N. Sip est un nombre premier divisant ®,, g(a) mais pas q4q(a), o
d parcours l'ensemble des diviseurs stricts de n, alors p = 1[n].

Démonstration. Comme p|®, g(a), on a que p|la”™ —1. En réduisant modulo p, on obtient a™ = 1[p].
Notons o(a) l'ordre de a dans le groupe multiplicatif ;. On vient de montrer que o(a)[n. Si

o(a) < n, alors @@ —1 =0 dans F, et donc :

pla®® 1= T] ®aola) (21)
dlo(a)

11 suit que p divise I'un des 4 g(a), dlo(a)|n, ce qui est exclu par hypothése. Donc o(a) = n. Par
théoréme de Lagrange sur le groupe multiplicatif F; (d’ordre p—1), on a que n|p— 1, c’est-a~dire
p = 1[n]. O

On propose alors p un diviseur premier de ®,, o(N!). On écrit @, o(N!) = pd. Remarquons
que ®,, 9(0) est un entier, produit de racines de I'unité : ¢’est donc 1. Ceci méne & une relation
de Bézout :

pd = @, o(N!) = NIP(N!)+ @, ¢(0) (22)

ou P est un polynéme a coefficients entiers. Ainsi, p est premier avec N! et en particulier,
p>N>n (et notamment p est premier a n)
Si d est un diviseur strict de n tel que p|®4 g(N!), alors en réduisant modulo p 'égalité :

(N)" =1 =[] ®aa(NY) (23)
d|n

il vient que N est une racine double de X" — 1, ce qui est absurde car n et premier avec p et
donc X™ — 1 est séparable. En appliquant le lemme, on a que p = 1[n], et on montre le théoréme !

Facteurs irréductibles dans F,[X] ([1], exercice 14.7)

Dans cette section, on va étudier la réductibilité des polyndomes cyclotomiques a coefficients
dans un corps fini.

Soit ¢ une puissance d’un nombre premier p. Soit n un entier premier avec p. On pose
s:=[L: K].

Théoréme 9. Tous les facteurs irréductibles de ®,, r, sont d’ordre s. De plus, s est l’ordre

de q dans le groupe mutliplicatif (Z/nz) *,

Démonstration. Comme toutes les racines de ®,,  engendrent l'extension L/Fy, leurs polynomes
minimaux sont tous de degré s.
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Pour montrer que ¢ est d’ordre s dans (Z/nz) X, on s’intéresse &

Frob, : L — L

z— zf

On va montrer que Frob, est d’ordre s dans Autp, (L), le groupe des automorphismes de I'exten-
sion L/F,. Considérons a un générateur du groupe multiplicatif L, d’ordre ¢° — 1. Considérons
alors k € N. On a :

24
25
26
27

Frobzk(a) —a < o =a
— o(a)|l¢* —1
= ¢ -1l -1

(24)
(25)
(26)
(27)

D’oti nécessairement, s est inférieur ou égal & I'ordre de Frob,. Comme d’un autre c6té, FI“ObZS
est I'identité sur IF;, par théoréme de Lagrange, on obtient bien que Frob, est d’ordre s. Pour
terminer, prenons w € uy (F,). Alors, pour k € N :

Frob;k(w) =w <= Frobgk = Idy, car L =Fg(w) (28)
— slk (29)

Mais d’autre part :

Froby(w)* =w <= w? 1=1 (30)

= ¢" —1=0[n] car w € u’(F,) (31)

<~ o(q)|k (32)

Ces deux suites d’équivalences prouvent bien que 'ordre de ¢ dans (Z/ nZ) " est s. (I

On a quelques conséquences intéressantes de cette étude :

Corollaire 10. Si n est tel que (Z/nz)>< n’est pas cyclique, alors ®, q est réductible sur
tous les corps finis de cardinal premier avec n.

Démonstration. Si q est une puissance d’un nombre premier ne divisant pas n, alors les facteurs

irréductibles de ®,, o = ®,, r, sont tous de degré I'ordre de ¢ dans (Z/nz) " Donc si (Z/nz) *
n’est pas cyclique, ¢ ne peut pas étre d’ordre ¢(n) et les facteurs irréductibles de ®,r, sont
stricts. (I

Corollaire 11. ®g g est un polynome irréductible dans Z[X] et Q[X]| mais réductible sur
tous les corps finis.

Démonstration. On a ®gg = X 4 4 1. Soit F, un corps fini de caractéristique p premiére.
Sip=2,alors @55, = (X + 1)* est réductible.
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Sinon, p est premier avec 8. Dans ce cas, il suffit de remarquer que :

(Z/37)" =Z/97, x Z/og, (33)

En particulier, ce groupe n’est pas cyclique, et donc ®gr, est réductible.
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