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CYCLOTOMIE
- 102, 104, 121, 123, 127, 141, 120, 125 –

—

Ce développement est modulaire : il contient trop de choses pour être présenté tel quel. On
peut prendre les parties les plus intéressantes pour la leçon en cours et admettre le reste, mais il
s’apprend bien comme un seul bloc uni.

J’ai décomposé ce document en quatre parties, les trois dernières étant indépendantes :
1. En premier lieu, on montre plusieurs résultats préliminaires, essentiels pour manipuler

les polynômes cyclotomiques, mais qui peuvent être simplement énoncés dans le plan pour
gagner du temps et faire des choses plus poussées en développement.

2. On prouve ensuite l’irréductibilité des polynômes cyclotomiques dans Q[X]. Indispensable
pour la 102 mais peut ne pas être mis en avant dans d’autres leçons, par exemple la 121,
la 123 ou la 125.

3. On applique l’étude des polynômes cyclotomiques à la démonstration d’une version faible
du théorème de progression arithmétique de Dirichlet. Un must have pour la 121 !

4. Dans la dernière partie, on étudie la réductibilité des polynômes cyclotomiques à coefficients
dans les corps finis. Cette partie est certainement la plus délicate, mais elle est plus originale
que le travail dans Q[X]. Elle me semble parfaite pour la 123, la 141 et dans une moindre
mesure, la 120.

Soit K un corps et n un entier. Dans toute la suite, on fixe L un corps de décomposition
du polynôme Xn − 1. On pose µn(K) le groupe des racines n-ièmes de l’unité dans L et µ∗

n(K)
celui des racines n-ièmes primitives de l’unité, c’est-à-dire les éléments d’ordre n dans le groupe
µn(K). On définit alors le n-ième polynôme cyclotomique à coefficients dans L :

Φn,K :=
∏

ω∈µ∗
n(K)

(X − ω) ∈ L[X] (1)

Généralités sur les polynômes cyclotomiques ([2], section VI.1)
Cette section contient un certain nombre de résultats préliminaires indispensables à connaître

pour la suite mais qui peuvent être admis ou pas selon le temps et la leçon présentée.

Lemme 1 (Une relation de récurrence). On suppose que la caractéristique de K ne
divise pas n. Alors :

Xn − 1 =
∏
d|n

Φd,K (2)

Démonstration. Le polynôme Xn − 1 est séparable car il ne partage aucune de ses racines dans
L avec son polynôme dérivé nXn−1 ̸= 0 (i). Il est donc à racines simples dans L. Par le théorème

(i). Ce polynôme est non nul car n n’est pas divisé par la caractéristique de K.

Contactez-moi en cas de coquille à prénom.nom@ens-rennes.fr !



de Lagrange :
µn(K) =

⊔
d|n

µ∗
n(K) (3)

et donc :

Xn − 1 =
∏

ω∈µn(K)

(X − ω) (4)

=
∏
d|n

∏
ω∈µ∗

d(K)

(X − ω) (5)

=
∏
d|n

Φd,K (6)

□

Lemme 2.
Φn,Q ∈ Z[X]

Démonstration. On procède par récurrence forte sur n. Si n = 1, alors Φn,Q = X − 1 ∈ Z[X].
Supposons donc n ⩾ 2 et que tous les polynômes cyclotomiques d’ordre inférieur strict à n sont à
coefficients entiers. Alors, d’après le lemme 1, Xn − 1 = Φn,QP où P ∈ Z[X]. On peut voir cette
écriture comme celle d’une divison euclidienne dans L[X]. Mais alors, comme P est unitaire dans
Z[X], on peut également faire la division euclidienne de Xn − 1 par P :

Xn − 1 = QP +R, deg(R) < deg(P ) (7)

Comme il s’agit également d’une division euclidienne dans L[X], on peut conclure par unicité :
R = 0, Q = Φn,Q ∈ Z[X]. □

Remarque : Par la même preuve, on prouve que Φn,K ∈ Fp[X] si K est de caractéristique p
première.

Lemme 3. Si K est de caractéritique p > 0, et si n est premier avec p, alors :

Φn,K = Φn,Q (8)

c’est-à-dire que Φn,K est obtenu en projetant les coefficients (entiers) de Φn,Q dans Fp.

Démonstration. On procède encore une fois par récurrence en utilisant le lemme 1. Pour n = 1,
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c’est clair. Supposons n ⩾ 2 et que pour tout d|n, d < n le résultat est acquis (ii). Alors :

Xn − 1 = Φn,K

∏
d|n
d̸=n

Φd,K (lemme 1 dans K) (9)

= Φn,K

∏
d|n
d̸=n

Φd,Q (hypothèse de récurrence) (10)

= Φn,Q
∏
d|n
d ̸=n

Φd,Q (lemme 1 dans Q) (11)

= Φn,Q
∏
d|n
d ̸=n

Φd,Q (12)

Il ne reste qu’à simplifier par
∏
d|n
d̸=n

Φd,Q. □

Irréductibilité sur Q ([2], théorème VI.11)
Nous allons montrer dans cette partie le très classique :

Théorème 4 (Irréductibilité dans Q[X]). Φn,Q est irréductible dans Q[X] et dans Z[X].

Soit f un diviseur irréductible unitaire de Φn,Q dans Q[X]. On va montrer que f = Φn,Q en
montrant que ces deux polynômes ont les mêmes racines complexes.

On a f |Xn − 1. Notons h ∈ Q[X] tel que fh = Xn − 1.

Lemme 5.
f, h ∈ Z[X]

Démonstration. Comme Xn − 1 et f sont unitaires, h l’est également. Soit r ∈ N∗ tel que
rf ∈ Z[X]. Notons alors r′ le pgcd des coefficients de rf . Comme f est unitaire, r′|r et donc
r

r′
f ∈ Z[X] est de contenu 1 avec

r

r

′
∈ Z. Notons cet entier r̃. On fait de même avec h : il existe

q̃ un entier tel que q̃h soit à coefficients entiers et de contenu 1. On a alors :

r̃q̃(Xn − 1) = (r̃f)(q̃h) (13)

En appliquant le contenu (qui est multiplicatif) à cette égalité, on obtient :

1 = r̃q̃ (14)

D’où r̃ = q̃ = 1 et f ∈ Z[X], h ∈ Z[X]. □

(ii). Si n est premier avec p, c’est également le cas de tous ses diviseurs.
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Ce résultat va nous permettre de projeter nos égalités dans Fp[X] par la suite.

Soit ω une racine complexe de f . Pour montrer f = Φn,Q, il suffit de montrer que si m est
un entier premier avec n, alors ωm est encore racine de f , car dans ce cas ces deux polynômes
auront les mêmes racines. On peut encore réduire le problème en montrant que pour tout p un
nombre premier ne divisant pas n, alors ωp est racine de f . En le montrant pour toute racine ω,
on aura bien que ωm est encore racine de f si m est premier avec n. On a :

0 = (ωp)n − 1 = f(ωp)h(ωp) (15)

Par l’absurde, on suppose f(ωp) ̸= 0. Alors h(ωp) = 0. Puisque f est irréductible et unitaire sur
Q, c’est le polynôme minimal de ω et donc on a :

f |h(Xp) i.e. ∃g ∈ Q[X] : h(Xp) = fg (16)

Remarquons que cette égalité pouvant être vue comme une division euclidienne dans Q[X], on
obtient immédiatement que g ∈ Z[X] en effectuant la même division euclidienne dans Z[X]. On
peut donc projeter l’égalité dans Fp[X] :

f̄ ḡ = h(Xp) = h(X)
p (iii) (17)

Soit alors θ ∈ Fp[X] un diviseur irréductible de f̄ . Alors :

θ|h̄p =⇒ θ|h̄ (18)

Or on a :
Xn − 1 = f̄ h̄ (19)

Donc :
θ2|Xn − 1 (20)

ce qui est absurde car n étant premier avec p, Xn − 1 est séparable dans Fp[X] et ses facteurs
irréductibles sont donc simples. En remontant le file des arguments, on a bien montré que Φn,Q =
f et donc que les polynômes cyclotomiques sont tous irréductibles sur Q !

Pour l’irréductibilité dans Z[X], il suffit d’utiliser le fait que ces polynômes sont unitaires,
donc de contenu 1.

Corollaire 6. L/Q est une extension de degré φ(n), où φ désigne l’indicatrice d’Euler.

Théorème de Dirichlet faible ([2], proposition VII.13)
Les polynôems cyclotomiques vont nous permettre de démontrer une version faible du théorème

de progression arithmétique de Dirichlet.

Théorème 7 (Dirichlet faible). La suite (λn + 1)λ∈N contient une infinité de nombres
premiers. En d’autres termes, il existe une infinité de nombres premiers congrus à 1 modulo
n.

(iii). On utilise le fait que le morphisme de Frobenius s’étend en un morphisme d’anneaux sur Fp[X] laissant
stable les éléments de Fp.
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L’énoncé est impliqué par le suivant : pour tout entier N > n, il existe une nombre premier
p ⩾ N congru à 1 modulo n. La cyclotomie va fournir un candidat astucieux en exploitant le
lemme suivant :

Lemme 8. Soit a ∈ N. Si p est un nombre premier divisant Φn,Q(a) mais pas Φd,Q(a), où
d parcours l’ensemble des diviseurs stricts de n, alors p ≡ 1[n].

Démonstration. Comme p|Φn,Q(a), on a que p|an−1. En réduisant modulo p, on obtient an ≡ 1[p].
Notons o(a) l’ordre de a dans le groupe multiplicatif F×

p . On vient de montrer que o(a)|n. Si
o(a) < n, alors āo(a) − 1 = 0 dans Fp et donc :

p|ao(a) − 1 =
∏

d|o(a)

Φd,Q(a) (21)

Il suit que p divise l’un des Φd,Q(a), d|o(a)|n, ce qui est exclu par hypothèse. Donc o(a) = n. Par
théorème de Lagrange sur le groupe multiplicatif F×

p (d’ordre p−1), on a que n|p−1, c’est-à-dire
p ≡ 1[n]. □

On propose alors p un diviseur premier de Φn,Q(N !). On écrit Φn,Q(N !) = pd. Remarquons
que Φn,Q(0) est un entier, produit de racines de l’unité : c’est donc ±1. Ceci mène à une relation
de Bézout :

pd = Φn,Q(N !) = N !P (N !) + Φn,Q(0) (22)

où P est un polynôme à coefficients entiers. Ainsi, p est premier avec N ! et en particulier,
p > N > n (et notamment p est premier à n).

Si d est un diviseur strict de n tel que p|Φd,Q(N !), alors en réduisant modulo p l’égalité :

(N !)n − 1 =
∏
d|n

Φd,Q(N !) (23)

il vient que N ! est une racine double de Xn − 1, ce qui est absurde car n et premier avec p et
donc Xn − 1 est séparable. En appliquant le lemme, on a que p ≡ 1[n], et on montre le théorème !

Facteurs irréductibles dans Fq[X] ([1], exercice 14.7)
Dans cette section, on va étudier la réductibilité des polynômes cyclotomiques à coefficients

dans un corps fini.
Soit q une puissance d’un nombre premier p. Soit n un entier premier avec p. On pose

s := [L : K].

Théorème 9. Tous les facteurs irréductibles de Φn,Fq sont d’ordre s. De plus, s est l’ordre
de q dans le groupe mutliplicatif

(Z/nZ)×
.

Démonstration. Comme toutes les racines de Φn,K engendrent l’extension L/Fq, leurs polynômes
minimaux sont tous de degré s.
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Pour montrer que q est d’ordre s dans
(Z/nZ)×

, on s’intéresse à

Frobq : L → L

x 7→ xq

On va montrer que Frobq est d’ordre s dans AutFq
(L), le groupe des automorphismes de l’exten-

sion L/Fq. Considérons α un générateur du groupe multiplicatif L×, d’ordre qs − 1. Considérons
alors k ∈ N. On a :

Frob◦kq (α) = α ⇐⇒ αqk = α (24)

⇐⇒ o(α)|qk − 1 (25)

⇐⇒ qs − 1|qk − 1 (26)
(27)

D’où nécessairement, s est inférieur ou égal à l’ordre de Frobq. Comme d’un autre côté, Frob◦sq
est l’identité sur Fq par théorème de Lagrange, on obtient bien que Frobq est d’ordre s. Pour
terminer, prenons ω ∈ µ∗

n(Fq). Alors, pour k ∈ N :

Frob◦kq (ω) = ω ⇐⇒ Frob◦kq = IdL car L = Fq(ω) (28)

⇐⇒ s|k (29)

Mais d’autre part :

Frobq(ω)
◦k = ω ⇐⇒ ωqs−1 = 1 (30)

⇐⇒ qk − 1 ≡ 0[n] car ω ∈ µ∗
n(Fq) (31)

⇐⇒ o(q)|k (32)

Ces deux suites d’équivalences prouvent bien que l’ordre de q dans
(Z/nZ)×

est s. □

On a quelques conséquences intéressantes de cette étude :

Corollaire 10. Si n est tel que
(Z/nZ)×

n’est pas cyclique, alors Φn,Q est réductible sur
tous les corps finis de cardinal premier avec n.

Démonstration. Si q est une puissance d’un nombre premier ne divisant pas n, alors les facteurs
irréductibles de Φn,Q = Φn,Fq

sont tous de degré l’ordre de q dans
(Z/nZ)×

. Donc si
(Z/nZ)×

n’est pas cyclique, q ne peut pas être d’ordre φ(n) et les facteurs irréductibles de Φn,Fq
sont

stricts. □

Corollaire 11. Φ8,Q est un polynôme irréductible dans Z[X] et Q[X] mais réductible sur
tous les corps finis.

Démonstration. On a Φ8,Q = X4 + 1. Soit Fq un corps fini de caractéristique p première.
Si p = 2 , alors Φ8,Fq

= (X + 1)4 est réductible.
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Sinon, p est premier avec 8. Dans ce cas, il suffit de remarquer que :(Z/8Z)× ∼= Z/2Z × Z/2Z (33)

En particulier, ce groupe n’est pas cyclique, et donc Φ8,FQ
est réductible.

□
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