Généralités

Définition du rayon de convergence et premières propriétés

Déf 1. [5] On appelle **série entière** toute série de fonctions de la forme $\sum_{n\in\mathbb{N}} a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

Déf 2. [5] Soit $\sum a_n z^n$ une série entière. Le nombre

$$R = \sup\{r \ge 0, \text{ la suite } (|a_n|r^n) \text{ est bornée}\}$$

s'appelle le rayon de convergence de $\sum a_n z^n$.

Lemme 3 (Abel). [5] Soit $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tel que la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ soit bornée. Alors

- (i) Pour tout $z \in \mathbb{C}$ tel que |z| < R, $\sum a_n z^n$ est absolument convergente.
- (ii) Pour tout $z \in \mathbb{C}$ tel que |z| > R, $\sum a_n z^n$ diverge.
- (iii) Pour tout $r \in \mathbb{N}^*$ tel que $r < R, \sum a_n z^n$ est normalement convergente dans $\{z \in \mathbb{C}, |z| \leq r\}$.

Ex 4. [5]

$$\forall x \in \mathbb{R}, \quad e^{x} = \sum_{i=0}^{\infty} \frac{x^{n}}{n!}$$

$$\forall x \in]-1,1[, \quad (1+x)^{\alpha} = 1 + \alpha x + ... + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^{n} + \frac{\mathbf{D\acute{e}f}}{\text{impelée somme des séries entière}} \sum_{n=1}^{\infty} c_{n}z^{n} \text{ définie par } c_{n} = a_{n} + b_{n} \text{ est impelée somme des séries entières} \sum_{n=1}^{\infty} a_{n}z^{n} \text{ et } \sum_{n=1}^{\infty} b_{n}z^{n}.$$
Soit $\sum a_{n}z^{n}$ deux series entières de rayon de convergence respectivement égal à $R > 0$ et $R' > 0$.

$$\mathbf{D\acute{e}f} \mathbf{12}. \quad [5] \text{ La série entière } \sum_{n=1}^{\infty} c_{n}z^{n} \text{ définie par } c_{n} = a_{n} + b_{n} \text{ est impelée somme des séries entières} \sum_{n=1}^{\infty} a_{n}z^{n} \text{ et } \sum_{n=1}^{\infty} b_{n}z^{n}.$$
Son rayon de convergence R'' vérifie $R'' \ge \inf(R, R')$.

Théo 5. [8] Soit $\sum a_n z^n$ une série entière de rayon de convergence R. La série $\sum a_n z^n$ converge normalement, donc uniformément, sur tout compact contenu dans son disque (ouvert) de convergence.

Détermination du rayon de convergence

Prop 6 (Règle de d'Alembert). [5] Si $\lim_{n\to+\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lambda$ avec $\lambda \in$ $[0,+\infty]$ alors le rayon de convergence de la série entière $\sum a_n z^n$ est $R=\frac{1}{\lambda}$.

Prop 7 (Règle de Cauchy). [5] $Si \lim_{n \to +\infty} |a_n|^{\frac{1}{n}} = \lambda \ avec \ \lambda \in [0, +\infty]$ alors le rayon de convergence de la série entière $\sum a_n z^n$ est $R = \frac{1}{\lambda}$.

NB 8. [5] Ces règles ne sont pas toujours applicables. Par exemple, pour la série $\sum z^{2n}$.

Méthode 9 (Comparaison des fonctions). [8] On étudie directement les suites (a_n) en les comparant à des fonctions de la forme $(\log(n))^{\alpha} n^{\beta} e^{-\lambda n}$.

Ex 10. [8] Le rayon de convergence de $\sum (1 - th(n))z^n$ est e^2 .

Formule 11 (Hadamard). [8] Soit $\sum a_n z^n$ une série entière de rayon R. Si $L = \limsup |a_n|^{\frac{1}{n}}$, on $a R = \frac{1}{r}$.

Opérations sur les séries entières

Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence respectivement égal à R > 0 et R' > 0.

convergence R'' vérifie $R'' \ge \inf(R, R')$.

Déf 13. La série entière définie par, pour tout $n \in \mathbb{N}$, $c_n =$ $\sum_{k=0}^{n} a_k b_{n-k}$ est appelée **produit de Cauchy** des séries entières $\sum a_n z^n$ et $\sum b_n z^n$. Son rayon de convergence R'' vérifie $R'' \geq$ $\inf(R, R')$.

peut être strictement supérieur que chacun des rayons de conver- R. La somme f de la série est analytique sur D(0, R). Plus préciségence des deux séries. Par exemple, considérons les deux séries entières $\sum u_n z^n$ et $\sum v_n z^n$ où

$$u_n = \begin{cases} 2 & \text{si } n = 0 \\ 2^n & \text{si } n \ge 1 \end{cases} \text{ et } v_n = \begin{cases} -1 & \text{si } n = 0 \\ 1 & \text{si } n \ge 1 \end{cases}$$

Le rayon de convergence de la première série est $\frac{1}{2}$ et celui de la deuxième est 1 alors que celui du produit est infini.

Propriétés de la somme sur le disque de convergence

Régularité

Théo 15. [5] L'application $z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ est continue sur le disque de convergence $\{z \in \mathbb{C}, |z| < R\}$.

NB 16. [5] On a même que c'est une application \mathcal{C}^{∞} .

Analyticité

Déf 17. [8] Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et Ω un ouvert de \mathbb{K} . On dit que $f:\Omega\to\mathbb{K}$ est développable en série entière au voisinage du **point** a de Ω s'il existe une série entière $\sum a_n z^n$ et r > 0 tels que, pour tout $z \in D(a, r)$

$$f(z) = \sum_{k=0}^{+\infty} a_k (z-a)^k$$
.

La fonction f est dite analytique sur Ω si elle est développable en série entière en chaque point de Ω .

NB 14. Le rayon de convergence du produit de deux séries entières Théo 18. [8] Soit $\sum a_n z^n$ une série entière de rayon de convergence ment, soit $z_0 \in \mathbb{C}$ tel que $|z_0| < R$. Alors la série entière $\sum \frac{f^{(n)}(z_0)}{n!} z^n$ a un rayon de convergence supérieur ou égal à $R - |z_0|$ et l'on a, $|z - z_0| < R - |z_0|$

$$f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Théo 19 (Zéros isolés). [1] Si f est une fonction analytique dans un ouvert connexe \mathcal{U} et si f n'est pas identiquement nulle, alors l'ensemble des zéros de f n'admet pas de point d'accumulation dans \mathcal{U} .

Théo 20 (Prolongement analytique). [1] Soit \mathcal{U} un ouvert connexe. Si deux fonctions analytiques coïncident sur un sous-ensemble $D \subset \mathcal{U}$ ayant un point d'accumulation dans \mathcal{U} , alors elles sont égales sur \mathcal{U} .

Théo 21 (Formule de Cauchy). [5] Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0, et f la somme de cette série entière sur son disque de convergence. Alors, pour tout $r \in]0, R[$ et pour tout $n \in \mathbb{N}$,

$$2\pi r^n a_N = \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta.$$

Théo 22 (Egalité de Parseval). [5] Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0 et f la somme de cette série entière sur son disque de convergence. Alors pour tout $r \in]0, R[$, la série $\sum |a_n|^2 r^{2n}$ converge et on a

$$\sum_{n=0}^{+\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta.$$

III - Etude du comportement de la IV somme sur la frontière du disque de convergence

Ex 23. [6] La série entière $\sum z^n$ a pour rayon de convergence 1 et cette série diverge sur tout le disque de convergence.

Ex 24. [6] La série entière $\sum \frac{1}{n^2} z^n$ a pour rayon de convergence 1 et cette série converge sur tout le disque de convergence.

Ex 25. [6] La série entière $\sum \frac{1}{n}z^n$ a pour rayon de convergence. Cependant, pour z=1, elle diverge (c'est la série harmonique) et pour z=-1, elle converge (c'est la série harmonique alternée).

Théo 26 (Abel). [5](Développement 1) Soit $\sum a_n z^n$ une série entière de rayon de convergence supérieur ou égal à 1 telle que $\sum a_n$ converge. On note f la somme de cette série entière sur le disque unité. On fixe $\theta_0 \in [0, \frac{\pi}{2}]$ et on pose

$$\Delta_{\theta_0} = \{ z \in \mathbb{C}, |z| < 1 \text{ } et \exists \rho > 0, \exists \theta \in [-\theta_0, \theta_0], z = 1 - \rho e^{i\theta} \}.$$

Alors

$$\lim_{\substack{z \to 1 \\ z \in \Delta_{\theta_0}}} f(z) = \sum_{n=0}^{+\infty} a_n.$$

Ex 27. [5] $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$ et $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log(2)$.

Cex 28. La réciproque est fausse. Par exemple,

$$\lim_{\substack{z \to 1 \\ |z| < 1}} \sum_{n=0}^{\infty} (-1)^n z^n = \frac{1}{2}$$

alors que $\sum (-1)^n$ diverge.

Théo 29 (Taubérien faible). [5](Développement 1) Soit $\sum a_n z^n$ une série entière de rayon de convergence 1 et f la somme de cette série entière sur le disque unité. On suppose qu'il existe $S \in \mathbb{C}$, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) =$

S. Si $a_n = o\left(\frac{1}{n}\right)$, alors $\sum a_n$ converge et $\sum_{n=0}^{\infty} a_n = S$.

IV - Développements de fonctions en série entière

1 - Développements en série entière des fractions rationnelles

Méthode 30. [5] Soit F une fraction rationnelle à coefficients dans \mathbb{C} . Si 0 n'est pas un pôle de F, on peut, après décomposition en éléments simples, se ramener l'étude de $\frac{1}{(z-z_0)^p}$ $(p \in \mathbb{N}^* \text{ et } z_0 \neq 0)$. Pour $z \in \mathbb{C}$ tel que $|z| < |z_0|$, on a

$$\frac{1}{(z-z_0)^p} = -\frac{(-1)^p}{z_0^p(p-1)!} \sum_{n=p-1}^{+\infty} \left(\frac{z}{z_0}\right)^n.$$

App 31. [2] Soit $a_1, ..., a_k$ des entiers naturels non nuls premiers entre eux dans leur ensemble. Pour $n \ge 1$, on note u_n le nombre de k-uplets $(x_1, ..., x_k) \in \mathbb{N}^k$ tels que $a_1x_1 + ... + a_kx_k = n$. Alors

$$u_n \underset{n \to \infty}{\sim} \frac{1}{a_1 ... a_k} \frac{n^{k-1}}{(k-1)!}.$$

2 - Séries entières et équations différentielles

Méthode 32. [7] Lorsque l'équation différentielle étudiée est à coefficients polynomiaux (ou fractions rationnelles dans certains cas), écrire la fonction inconnue sous forme de série entière afin de trouver une solution.

Ex 33. [4] L'équation différentielle $xy' = x + y^2$ admet une solution f_0 développable en série entière en 0 avec $f_0(x) = \sum_{n=0}^{+\infty} a_n x^n$ avec $a_0 = 0$, $a_1 = 1$ et, pour $n \ge 2$, $a_n = \frac{1}{n} \sum_{k=1}^{n-1} a_k a_{n-k}$.

Théo 34 (Nombres de Bell). [3](Développement 2) Pour tout $n \in \mathbb{N}^*$, on note B_n le nombre de partitions de [1, n], avec $B_0 = 1$. On a alors, pour tout $n \in \mathbb{N}^*$, $B_n = e^{-1} \sum_{k=0}^{\infty} \frac{k^n}{k!}$.

Références

- [1] Vincent Beck, Jérôme Malick, and Gabriel Peyré. *Objectif Agrégation*. HK, 2005.
- [2] Serge Francinou, Hervé Gianella, and Hervé Nicolas. Oraux X-ENS Analyse 2. Cassini, 2004.
- [3] Serge Francinou, Hervé Gianella, and Serge Nicolas. *Oraux X-ENS Algèbre 1*. Cassini, 2001.
- [4] Serge Francinou, Hervé Gianella, and Serge Nicolas. *Oraux X-ENS Analyse* 4. Cassini, 2012.
- [5] Xavier Gourdon. Les maths en tête Analyse. Ellipses, 2008.
- [6] Bertrand Hauchecorne. Les contre-exemples en mathématiques. Ellipses, 2007.
- [7] Xavier Merlin. Methodix Analyse. Ellipses, 1999.
- [8] Alain Pommelet. Cours d'analyse. Ellipses, 1994.