Théoreme de Sylow
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Théo (Cayley). Si G est fini de cardinal n, G est isomorphe a un
sous-groupe de S,,.

Déf. Soit GG un groupe fini de cardinal n et p un diviseur premier de n.
Sin = p*m avec p Am = 1, on appelle p-Sylow de GG un sous-groupe
de cardinal p©.

Théo (Sylow). Soit G un groupe fini et p un diviseur (premier) de
|G|, alors

(i) G contient au moins un p-Sylow.

(ii) Les p-Sylow sont tous conjugqués.

Démonstration. Pour montrer le (i) du théoréme, nous aurons besoin
de deux lemmes.

Lemme 1. Soit G un groupe avec |G| =n =p*m et pAm =1, et
soit H un sous-groupe de G. Soit S un p-Sylow de G. Alors il existe
a € G tel que aSa™' N H soit un p-Sylow de H.

NB. Ce lemme permet, connaissant un Sylow d’un groupe G d’en

trouver un pour un sous-groupe H.

Démonstration. Le groupe H opére sur GG/S par translation a gauche.
De plus, on a, pour tout a € G :

Stabg(aS) = {h€ H :h.aS=aS}
= {he€ H:a'haS = S}
= {h€eH:a'haec S}
aSa~' N H

On applique 1’'équation aux classes

G/SI= >

aSeN

|H|
laSa=1 N H]|

avec () un partie de G/S constitué exactement d’un représentant de
chaque orbite.
Par hypothése, on sait que p ne divise pas |G/S|. Ainsi, il existe

un aS € () tel que p ne divise pas msa‘*LJmm On sait, de plus que
aSa~' N H est un p-groupe, car sous-groupe du p-Sylow aSa~!. D’ou
le résultat. O]

Lemme 2. Soit n € N*. Alors GL,(Z/pZ) posséde un p-Sylow.

Démonstration. Pour connaitre le cardinal de GL,(Z/pZ), il suffit de
connaitre le nombre de bases du Z/pZ espace vectoriel (Z/pZ)".
On a donc :

e Pour ey, on peut choisir tout le monde sauf 0, soit p” — 1 choix.

e Pour ey, on peut choisir tout le monde sauf Vect(ey), soit p"™ — p
choix.

e Pour e, on peut choisir tout le monde sauf Vect(ey, ..., e,_1), soit

p"* — p"~! choix.
Ainsi, on a
GL.(Z/pZ)] = (" = 1" = p)..(0" = p")
= (pp*..p" Hmavec mAp=1
_ pn(n2fl)m

On exhibe alors un p-Sylow P de GL,(Z/pZ). C’est 'ensemble des
matrices triangulaires supérieures strictes :

P={A=(a;i;):a,;=0sii>jeta,;=1}

En effet, comme les a; ; pour ¢ < j sont quelconques, on a

n—1 _ pn(n271)

Pl=pxp?>x..x
pXxXp p



Théoreme de Sylow

Revenons a la preuve du théoreme. Soit G un groupe et p un diviseur
de |G| = n. On plonge d’abord G dans S,,, par le théoreme de Cayley,
puis on plonge S, dans GL,,(Z/pZ) a I'aide de I'application injective
suivante :

S, — GL,(Z/pZ)
o — U,

avec u, définie dans la base canonique par u,(e;) = o (i)
Finalement, on a donc réalisé G comme sous-groupe de G L, (Z/pZ)
qui possede un p-Sylow d’apres le lemme 2. Ainsi, G possede un
p-Sylow par le lemme 1.

Montrons maintenant (i7).
Soit H et S deux p-Sylow de G. Comme H est un sous-groupe de G,
par le lemme 1, il existe un a € G tel que aSa~! N H soit un p-Sylow
de H. Or, comme H est un p-groupe, on a aSa ' N H = H et donc
H est inclus dans aSa™' N H. Ainsi, on a H = aSa™".

m

Lecons possibles : 101 - 104

Questions posées :
» Qu’est-ce qu'un p-Sylow ?

» Comment appelle-t-on "G/S"? Réponse : L’ensemble des classes
a gauche.

» Est-ce qu'un groupe quotienté par un p-Sylow a toujours une
structure de groupe? Réponse : Non, il faut que le sous-groupe
par lequel on quotiente soit distingué. Si le p-Sylow est unique,
alors c’est vrai.

» Quels sont les p-Sylow de G = Z/nZ avec n = p*m? Réponse :
Si p ne divise pas n, alors G n’admet pas de p-Sylow. Sinon, soit
S1 et Sy deux p-Sylow de G. Alors, par le théoreme de Sylow, ils

sont conjugués, ie il existe a € G tel que S =a+ Sy —a = 5,
donc il y a un unique p-Sylow qui est {km : k € [0,p — 1] }.

Quels sont les p-Sylow de S, 7 Réponse : S, est de cardinal p!. Un
p-Sylow de S, doit donc étre de cardinal p. C’est donc le groupe
engendré par un p-cycle.

Comment calcule-t-on 1+ 2+ ... + (n — 1) ? Réponse : En addi-
tionnant au premier terme le dernier, puis le deuxieme a I'avant-
dernier, etc, on arrive a n. On fait § sommes d’ou le résultat.

Pourquoi le groupe P est un sous-groupe de GL,(Z/pZ)? Ré-
ponse : Si on effectue la multiplication de deux matrices de P, on
reste dans P. Le calcul de l'inverse est un peu plus subtil. Pour
inverser la matrice, on résout un systéme linéaire échelonné.



