
Théorème de Sylow

Références :
Cours d’algèbre, Daniel Perrin

Théo (Cayley). Si G est fini de cardinal n, G est isomorphe à un
sous-groupe de Sn.

Déf. Soit G un groupe fini de cardinal n et p un diviseur premier de n.
Si n = pαm avec p∧m = 1, on appelle p-Sylow de G un sous-groupe
de cardinal pα.

Théo (Sylow). Soit G un groupe fini et p un diviseur (premier) de
|G|, alors
(i) G contient au moins un p-Sylow.
(ii) Les p-Sylow sont tous conjugués.

Démonstration. Pour montrer le (i) du théorème, nous aurons besoin
de deux lemmes.
Lemme 1. Soit G un groupe avec |G| = n = pαm et p ∧m = 1, et
soit H un sous-groupe de G. Soit S un p-Sylow de G. Alors il existe
a ∈ G tel que aSa−1 ∩H soit un p-Sylow de H.
NB. Ce lemme permet, connaissant un Sylow d’un groupe G d’en
trouver un pour un sous-groupe H.

Démonstration. Le groupe H opère sur G/S par translation à gauche.
De plus, on a, pour tout a ∈ G :

StabH(aS) = {h ∈ H : h.aS = aS}
= {h ∈ H : a−1haS = S}
= {h ∈ H : a−1ha ∈ S}
= aSa−1 ∩H

On applique l’équation aux classes

|G/S| =
∑
aS∈Ω

|H|
|aSa−1 ∩H|

avec Ω un partie de G/S constitué exactement d’un représentant de
chaque orbite.
Par hypothèse, on sait que p ne divise pas |G/S|. Ainsi, il existe
un aS ∈ Ω tel que p ne divise pas |H|

|aSa−1∩H| . On sait, de plus que
aSa−1 ∩H est un p-groupe, car sous-groupe du p-Sylow aSa−1. D’où
le résultat.

Lemme 2. Soit n ∈ N∗. Alors GLn(Z/pZ) possède un p-Sylow.

Démonstration. Pour connaitre le cardinal de GLn(Z/pZ), il suffit de
connaître le nombre de bases du Z/pZ espace vectoriel (Z/pZ)n.
On a donc :
• Pour e1, on peut choisir tout le monde sauf 0, soit pn − 1 choix.
• Pour e2, on peut choisir tout le monde sauf V ect(e1), soit pn − p

choix.
• ...
• Pour en, on peut choisir tout le monde sauf V ect(e1, ..., en−1), soit
pn − pn−1 choix.

Ainsi, on a

|GLn(Z/pZ)| = (pn − 1)(pn − p)...(pn − pn−1)
= (pp2...pn−1)m avec m ∧ p = 1
= p

n(n−1)
2 m

On exhibe alors un p-Sylow P de GLn(Z/pZ). C’est l’ensemble des
matrices triangulaires supérieures strictes :

P = {A = (ai,j) : ai,j = 0 si i > j et ai,i = 1}.

En effet, comme les ai,j pour i < j sont quelconques, on a

|P | = p× p2 × ...× pn−1 = p
n(n−1)

2 .
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Revenons à la preuve du théorème. SoitG un groupe et p un diviseur
de |G| = n. On plonge d’abord G dans Sn, par le théorème de Cayley,
puis on plonge Sn dans GLn(Z/pZ) à l’aide de l’application injective
suivante :

Sn −→ GLn(Z/pZ)
σ 7−→ uσ

avec uσ définie dans la base canonique par uσ(ei) = eσ(i).
Finalement, on a donc réalisé G comme sous-groupe de GLn(Z/pZ)
qui possède un p-Sylow d’après le lemme 2. Ainsi, G possède un
p-Sylow par le lemme 1.

Montrons maintenant (ii).
Soit H et S deux p-Sylow de G. Comme H est un sous-groupe de G,
par le lemme 1, il existe un a ∈ G tel que aSa−1 ∩H soit un p-Sylow
de H. Or, comme H est un p-groupe, on a aSa−1 ∩ H = H et donc
H est inclus dans aSa−1 ∩H. Ainsi, on a H = aSa−1.

Leçons possibles : 101 - 104

Questions posées :
I Qu’est-ce qu’un p-Sylow ?
I Comment appelle-t-on "G/S" ? Réponse : L’ensemble des classes

à gauche.
I Est-ce qu’un groupe quotienté par un p-Sylow a toujours une

structure de groupe ? Réponse : Non, il faut que le sous-groupe
par lequel on quotiente soit distingué. Si le p-Sylow est unique,
alors c’est vrai.

I Quels sont les p-Sylow de G = Z/nZ avec n = pαm ? Réponse :
Si p ne divise pas n, alors G n’admet pas de p-Sylow. Sinon, soit
S1 et S2 deux p-Sylow de G. Alors, par le théorème de Sylow, ils

sont conjugués, ie il existe a ∈ G tel que S1 = a + S2 − a = S2
donc il y a un unique p-Sylow qui est {km : k ∈ J0, p− 1K}.

I Quels sont les p-Sylow de Sp ? Réponse : Sp est de cardinal p!. Un
p-Sylow de Sp doit donc être de cardinal p. C’est donc le groupe
engendré par un p-cycle.

I Comment calcule-t-on 1 + 2 + ... + (n− 1) ? Réponse : En addi-
tionnant au premier terme le dernier, puis le deuxième à l’avant-
dernier, etc, on arrive à n. On fait n

2 sommes d’où le résultat.
I Pourquoi le groupe P est un sous-groupe de GLn(Z/pZ) ? Ré-

ponse : Si on effectue la multiplication de deux matrices de P , on
reste dans P . Le calcul de l’inverse est un peu plus subtil. Pour
inverser la matrice, on résout un système linéaire échelonné.
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