Formule de Stirling

Alexis Baudour

28 août 2025

Cliquez ici pour voir la vidéo Youtube du dev sur la chaine Alpha Math Agreg

1 Garet exo 251

Valable pour leçons 234,235,239,261,262,266. Ajouter la proposition 1 et enlever la question 2 ou 4 pour la 234,235 ou 266. Le dev est dans la section 2.

Attention, le Garet utilise la somme $\sum_{k=0}^{n} X_k$, et non $\sum_{k=1}^{n} X_k$, ce qui oblige à rajouter une étape qui utilise le lemme de Slutsky.

1.1 a) Densité de la somme de deux v.a. indépendantes

Proposition 1. Soient X et Y deux variables aléatoires (v.a.) réelles indépendantes, de densités respectives f_X et f_Y . Alors la v.a. somme Z = X + Y a pour densité h_Z le produit de convolution de f_X et f_Y :

$$h_Z(z) = (f_X * f_Y)(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

 $D\acute{e}monstration$. Soit ϕ une fonction test (continue, bornée). Par définition de la densité h_Z , on a $E[\phi(Z)] = \int_{-\infty}^{+\infty} \phi(z) h_Z(z) \, dz$. Calculons cette espérance d'une autre manière.

$$E[\phi(Z)] = E[\phi(X+Y)]$$

$$= \int_{\mathbb{R}^2} \phi(x+y) f_X(x) f_Y(y) \, dx \, dy \quad \text{(par indépendance)}$$

$$= \int_{-\infty}^{+\infty} f_X(x) \left(\int_{-\infty}^{+\infty} \phi(x+y) f_Y(y) \, dy \right) \, dx$$

Dans l'intégrale interne, effectuons le changement de variable z = x + y, soit y = z - x. On obtient dy = dz.

$$E[\phi(Z)] = \int_{-\infty}^{+\infty} f_X(x) \left(\int_{-\infty}^{+\infty} \phi(z) f_Y(z - x) dz \right) dx$$
$$= \int_{\mathbb{R}^2} \phi(z) f_X(x) f_Y(z - x) dx dz$$

 $\phi(z) < M$ en faisant le changement de variable inverse on obtient que $|\phi(z)f_X(x)f_Y(z-x)|$ est dans $L^1(\mathbb{R}^2)$. Par le théorème de Fubini, on peut intervertir l'ordre d'intégration :

$$E[\phi(Z)] = \int_{-\infty}^{+\infty} \phi(z) \left(\int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) \, dx \right) \, dz$$

Par identification, on en déduit l'expression de la densité $h_Z(z)$.

Somme de deux lois Gamma indépendantes

Soient deux variables aléatoires indépendantes X et Y. On suppose que X suit une loi gamma de paramètres (a,1), notée $X \sim \Gamma(a,1)$, et que Y suit une loi gamma de paramètres (b,1), notée $Y \sim \Gamma(b,1)$. Nous souhaitons montrer que leur somme Z = X + Y suit une loi gamma de paramètres (a+b,1), c'est-à-dire $Z \sim \Gamma(a+b,1)$.

La densité de probabilité d'une variable aléatoire suivant une loi $\Gamma(k,\lambda)$ est donnée pour x>0 par :

$$f(x; k, \lambda) = \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x}$$

où $\Gamma(k)$ est la fonction Gamma d'Euler.

Pour nos variables X et Y, avec un paramètre d'échelle $\lambda=1,$ les densités de probabilité respectives sont :

$$f_X(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x}$$
, pour $x > 0$
 $f_Y(y) = \frac{1}{\Gamma(b)} y^{b-1} e^{-y}$, pour $y > 0$

La densité de probabilité de la somme Z = X + Y est obtenue par le **produit de convolution** des densités de X et Y:

$$f_Z(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(t) f_Y(z - t) dt$$

Les densités $f_X(t)$ et $f_Y(z-t)$ sont non nulles uniquement si t>0 et z-t>0, ce qui implique que 0 < t < z. L'intégrale est donc non nulle seulement pour z>0, et ses bornes d'intégration deviennent 0 et z:

$$f_Z(z) = \int_0^z \left(\frac{1}{\Gamma(a)} t^{a-1} e^{-t}\right) \left(\frac{1}{\Gamma(b)} (z-t)^{b-1} e^{-(z-t)}\right) dt$$

Regroupons les termes constants et simplifions le terme exponentiel :

$$f_Z(z) = \frac{1}{\Gamma(a)\Gamma(b)} \int_0^z t^{a-1} (z-t)^{b-1} e^{-t-z+t} dt$$
$$f_Z(z) = \frac{e^{-z}}{\Gamma(a)\Gamma(b)} \int_0^z t^{a-1} (z-t)^{b-1} dt$$

Pour résoudre l'intégrale, nous effectuons le changement de variable t=zu. Cela implique que $dt=z\,du$. Les nouvelles bornes d'intégration sont :

- Si t = 0, alors u = 0.
- Si t = z, alors u = 1.

En substituant dans l'intégrale :

$$\int_0^z t^{a-1} (z-t)^{b-1} dt = \int_0^1 (zu)^{a-1} (z-zu)^{b-1} (z du)$$

$$= \int_0^1 z^{a-1} u^{a-1} z^{b-1} (1-u)^{b-1} z du$$

$$= z^{a-1+b-1+1} \int_0^1 u^{a-1} (1-u)^{b-1} du$$

$$= z^{a+b-1} \int_0^1 u^{a-1} (1-u)^{b-1} du$$

L'intégrale que nous avons isolée est la définition de la **fonction Bêta**, notée B(a,b), qui est reliée à la fonction Gamma par la relation $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. Cependant il n'est pas nécessaire d'établir cette formule et elle sera une conséquence de notre démonstration. En effet

$$f_Z(z) = Ce^{-z}z^{a+b-1}$$

Avec C est une constante, f_Z est proportionelle à la densité de $\Gamma(a+b,1)$ mais f_Z est une densité donc nécessairement ces deux densités sont égales.

1.2 b) Formule de la densité de $\phi(X)$

Proposition 2. Soit X une v.a. de densité f_X et ϕ un C¹-difféomorphisme (fonction bijective, continûment dérivable, de dérivée non nulle). Alors la v.a. $Y = \phi(X)$ a pour densité :

$$f_Y(y) = f_X(\phi^{-1}(y)) \cdot |(\phi^{-1})'(y)| = \frac{f_X(\phi^{-1}(y))}{|\phi'(\phi^{-1}(y))|}$$

Idée de la preuve. On part de la fonction de répartition $F_Y(y) = P(Y \leq y) = P(\phi(X) \leq y)$. En appliquant ϕ^{-1} , on obtient $F_Y(y)$ en fonction de F_X . La dérivation par rapport à y, en utilisant le théorème de dérivation des fonctions composées, donne le résultat. La valeur absolue sert à unifier les cas où ϕ est croissante ou décroissante.

2 Application: Preuve de la formule de Stirling

Exercice 1 (Exercice 251 Garet). Soit $(X_k)_{k\geq 1}$ une suite de v.a.i.i.d. de loi $\mathcal{E}(1)$. Soit $S_n = \sum_{k=1}^n X_k$.

Question 2 : Limite de la somme centrée réduite

Les v.a. X_k ont pour espérance $E[X_k] = 1$ et pour variance $Var(X_k) = 1$. Le Théorème Central Limite s'applique à la somme S_n (dont l'espérance est n et $Var(S_n) = Var(X_1) + ... + Var(X_n) = n$ car les X_i sont indépendants) :

$$\frac{S_n - E[S_n]}{\sqrt{Var(S_n)}} = \frac{S_n - n}{\sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Question 3 : Densité de la variable centrée réduite

La somme de n v.a. i.i.d. $\mathcal{E}(1)$ suit une loi Gamma $\Gamma(n,1)$. La densité de S_n est donc $f_{S_n}(s) = \frac{s^{n-1}e^{-s}}{(n-1)!}$ pour s > 0. Soit $Y_n = \frac{S_n - n}{\sqrt{n}}$. Il s'agit d'une transformation affine $Y_n = \phi(S_n)$ avec $\phi(s) = \frac{s - n}{\sqrt{n}}$. On a $\phi^{-1}(y) = n + y\sqrt{n}$ et $(\phi^{-1})'(y) = \sqrt{n}$. D'après la formule de changement de variable (b), la densité g_n de Y_n est :

$$g_{n}(y) = f_{S_{n}}(\phi^{-1}(y)) \cdot |(\phi^{-1})'(y)|$$

$$= f_{S_{n}}(n + y\sqrt{n}) \cdot \sqrt{n}$$

$$= \frac{(n + y\sqrt{n})^{n-1}e^{-(n+y\sqrt{n})}}{(n-1)!} \sqrt{n}$$

$$= \frac{n^{n-1}(1 + y/\sqrt{n})^{n-1}e^{-n}e^{-y\sqrt{n}}}{(n-1)!} \sqrt{n}$$

$$= \underbrace{\frac{n^{n-1/2}e^{-n}}{(n-1)!}}_{a_{n}} \cdot \underbrace{e^{-y\sqrt{n}}\left(1 + \frac{y}{\sqrt{n}}\right)^{n-1}}_{h_{n}(y)}$$

$$= \underbrace{\frac{n^{n+1/2}e^{-n}}{n!}}_{a_{n}} \cdot \underbrace{e^{-y\sqrt{n}}\left(1 + \frac{y}{\sqrt{n}}\right)^{n-1}}_{h_{n}(y)} \quad \text{pour } y > -\sqrt{n}$$

Question 4 : Limite d'une intégrale de g_n

La convergence en loi de Y_n (de densité g_n) vers $Y \sim \mathcal{N}(0,1)$ (de densité ϕ_{norm}) implique la convergence des fonctions de répartition. Ainsi :

$$\lim_{n \to \infty} \int_0^1 g_n(y) dy = \lim_{n \to \infty} (F_{Y_n}(1) - F_{Y_n}(0)) = F_Y(1) - F_Y(0) = \int_0^1 \frac{e^{-y^2/2}}{\sqrt{2\pi}} dy$$

Question 5 : Limite d'une intégrale de h_n

On applique le Théorème de Convergence Dominée à $\int_0^1 h_n(y)dy$.

1. Convergence simple : Un développement limité de $\ln(h_n(y))$ montre que pour y fixé, $\lim_{n\to\infty} h_n(y) = e^{-y^2/2}$.

2. **Domination**: Pour $y \in [0,1]$, on utilise $\ln(1+y) \leq y$. $\ln(h_n(y)) = -\sqrt{n}y + (n-1)\ln(1+\frac{y}{\sqrt{n}}) \leq -\sqrt{n}y + (n-1)\frac{y}{\sqrt{n}} = -\frac{y}{\sqrt{n}} \leq 0$. Donc $h_n(y) \leq 1$. La fonction constante M(y) = 1 est intégrable sur [0,1] et domine la suite.

Le TCD s'applique :

$$\lim_{n \to \infty} \int_0^1 h_n(y) dy = \int_0^1 \lim_{n \to \infty} h_n(y) dy = \int_0^1 e^{-y^2/2} dy$$

Question 6: Formule de Stirling

On combine les résultats de Q4 et Q5. Comme $g_n(y) = a_n h_n(y)$, on a :

$$\lim_{n \to \infty} \int_0^1 g_n(y) dy = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} \int_0^1 h_n(y) dy\right)$$
$$\int_0^1 \frac{e^{-y^2/2}}{\sqrt{2\pi}} dy = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\int_0^1 e^{-y^2/2} dy\right)$$

On en déduit : $\lim_{n\to\infty} a_n = \frac{1}{\sqrt{2\pi}}$. En remplaçant a_n par sa définition $(a_n = \frac{n^{n+1/2}e^{-n}}{n!})$:

$$\lim_{n\to\infty}\frac{n^{n+1/2}e^{-n}}{n!}=\frac{1}{\sqrt{2\pi}}\iff \lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}(n/e)^n}=1$$

Ceci est la définition de l'équivalence asymptotique : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Pertinence d'un développement sur la densité de X + Y et Stirling

Numéro	Intitulé de la leçon	Pertinence
223	Suites réelles et complexes. Convergence, valeurs d'adhé-	**
	rence. Exemples et applications	
224	Exemples de développements asymptotiques de suites et de	***
	fonctions	
234	Fonctions et espaces de fonctions LEBESGUE-intégrables	***
235	Problèmes d'interversion de symboles en analyse	* * **
239	Fonctions définies par une intégrale dépendant d'un para-	* * **
	mètre. Exemples et applications	
261	Loi d'une variable aléatoire : caractérisations, exemples, ap-	****
	plications	
262	Convergences d'une suite de variables aléatoires. Théorèmes	****
	limites. Exemples et applications	
266	Utilisation de la notion d'indépendance en probabilités	****

Table 1 – Évaluation de la pertinence du développement

Légende:

- ** Le développement n'est pas assez pertinent mais peut être mentionné en application.
- $\star\star\star$ Le développement peut être présenté à la rigueur.
- * * ** Le développement est pertinent.
- $\star\star\star\star\star$ Le développement est très pertinent et central pour la leçon.

3 Démonstration de la formule de Stirling par les intégrales de Wallis

L'objectif est de démontrer la **formule de Stirling**:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

La preuve se déroule en trois étapes :

- 1. On montre l'existence d'une constante K > 0 telle que $n! \sim K\sqrt{n}(n/e)^n$.
- 2. On établit un équivalent des intégrales de Wallis.
- 3. On utilise cet équivalent pour déterminer la valeur de la constante K.

4 Existence de la constante K

Considérons la suite $(u_n)_{n\geq 1}$ définie par $u_n=\frac{n!e^n}{n^n\sqrt{n}}$. Nous allons montrer qu'elle converge vers une limite K>0. Pour cela, étudions la nature de la série de terme général $v_{n+1}-v_n$ où $v_n=\ln(u_n)$.

$$v_n = \ln(n!) + n - \left(n + \frac{1}{2}\right) \ln(n)$$

Calculons la différence :

$$v_{n+1} - v_n = \ln\left(\frac{(n+1)!}{n!}\right) + (n+1-n) - \left(n + \frac{3}{2}\right)\ln(n+1) + \left(n + \frac{1}{2}\right)\ln(n)$$

$$= \ln(n+1) + 1 - \left(n + \frac{3}{2}\right)\ln(n+1) + \left(n + \frac{1}{2}\right)\ln(n)$$

$$= 1 - \left(n + \frac{1}{2}\right)\ln(n+1) + \left(n + \frac{1}{2}\right)\ln(n)$$

$$= 1 - \left(n + \frac{1}{2}\right)\ln\left(\frac{n+1}{n}\right) = 1 - \left(n + \frac{1}{2}\right)\ln\left(1 + \frac{1}{n}\right)$$

Utilisons le développement limité de $\ln(1+x)$ en $0: \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + O(x^4)$. Pour x = 1/n, on a :

$$v_{n+1} - v_n = 1 - \left(n + \frac{1}{2}\right) \left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + O\left(\frac{1}{n^4}\right)\right)$$

$$= 1 - \left(1 - \frac{1}{2n} + \frac{1}{3n^2} + \frac{1}{2n} - \frac{1}{4n^2} + O\left(\frac{1}{n^3}\right)\right)$$

$$= 1 - \left(1 + \left(\frac{1}{3} - \frac{1}{4}\right) \frac{1}{n^2} + O\left(\frac{1}{n^3}\right)\right)$$

$$= -\frac{1}{12n^2} + O\left(\frac{1}{n^3}\right)$$

Le terme général $v_{n+1}-v_n$ est équivalent à $-1/(12n^2)$. La série de Riemann $\sum \frac{1}{n^2}$ converge, donc par comparaison, la série $\sum (v_{n+1}-v_n)$ converge. Ceci implique que la suite (v_n) converge vers une limite finie L. Par continuité de la fonction exponentielle, la suite $u_n=e^{v_n}$ converge vers une limite $K=e^L>0$. On a donc bien prouvé que :

$$\frac{n!e^n}{n^n\sqrt{n}}\xrightarrow[n\to\infty]{}K\quad\text{soit}\quad n!\sim K\sqrt{n}\left(\frac{n}{e}\right)^n$$

5 Équivalent des intégrales de Wallis

Les intégrales de Wallis sont définies pour $n \in \mathbb{N}$ par :

$$W_n = \int_0^{\pi/2} \sin^n(t) \, dt$$

Par une intégration par parties, on établit la relation de récurrence $W_n = \frac{n-1}{n}W_{n-2}$ pour $n \ge 2$. La suite (W_n) est positive et décroissante. On a donc $W_{n+1} \le W_n \le W_{n-1}$. En divisant par W_n :

$$\frac{W_{n+1}}{W_n} \le 1 \le \frac{W_{n-1}}{W_n} = \frac{n}{n-1}$$

Quand $n \to \infty$, $\frac{n}{n-1} \to 1$. Par le théorème des gendarmes, $\lim_{n \to \infty} \frac{W_{n+1}}{W_n} = 1$, soit $W_{n+1} \sim W_n$. Considérons le produit nW_nW_{n-1} . En utilisant la relation de récurrence, on montre que ce produit est constant :

$$nW_nW_{n-1} = n\left(\frac{n-1}{n}W_{n-2}\right)W_{n-1} = (n-1)W_{n-1}W_{n-2}$$

On calcule la valeur pour $n=1:1\cdot W_1W_0=1\cdot 1\cdot \frac{\pi}{2}=\frac{\pi}{2}.$ Donc, pour tout $n\geq 1,$ $nW_nW_{n-1}=\frac{\pi}{2}.$ Puisque $W_n\sim W_{n-1},$ on a $W_n^2\sim W_nW_{n-1}=\frac{\pi}{2n}.$ On en déduit l'équivalent :

$$W_n \sim \sqrt{\frac{\pi}{2n}}$$

6 Détermination de la constante K

Exprimons W_{2n} en utilisant la formule de récurrence :

$$W_{2n} = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdots \frac{1}{2} W_0 = \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2}$$

Nous avons deux équivalents pour W_{2n} :

- 1. D'après la section précédente : $W_{2n} \sim \sqrt{\frac{\pi}{4n}} = \frac{\sqrt{\pi}}{2\sqrt{n}}$.
- 2. En utilisant l'équivalent de n! trouvé à la section 1:

$$W_{2n} \sim \frac{K\sqrt{2n}(2n/e)^{2n}}{2^{2n}(K\sqrt{n}(n/e)^n)^2} \frac{\pi}{2}$$
$$\sim \frac{K\sqrt{2n} \cdot 4^n n^{2n} e^{-2n}}{4^n \cdot K^2 n(n^{2n} e^{-2n})} \frac{\pi}{2}$$
$$\sim \frac{K\sqrt{2}\sqrt{n}}{K^2 n} \frac{\pi}{2} = \frac{\pi\sqrt{2}}{2K\sqrt{n}}$$

En identifiant les deux équivalents, on obtient :

$$\frac{\sqrt{\pi}}{2\sqrt{n}} \sim \frac{\pi\sqrt{2}}{2K\sqrt{n}} \implies \sqrt{\pi} = \frac{\pi\sqrt{2}}{K} \implies K = \frac{\pi\sqrt{2}}{\sqrt{\pi}} = \sqrt{2\pi}$$

Conclusion

La constante K vaut $\sqrt{2\pi}$. On a donc démontré que :

$$\lim_{n \to \infty} \frac{n!e^n}{n^n \sqrt{n}} = \sqrt{2\pi}$$

Ce qui est la formule de Stirling.