253 Utilisation de la notion de convexité en analyse.

Soit *E* un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

I - Convexité d'une fonction, d'un ensemble

1. Ensembles convexes

a. Généralités

Définition 1. — Soient $a, b \in E$. On appelle **segment** d'extrémités a et b, l'ensemble

[GOU21] p. 51

$$[a,b] = \{ta + (1-t)b \mid t \in [0,1]\}$$

— On dit qu'une partie C de E est **convexe** si

$$\forall a, b \in E, [a, b] \subseteq E$$

(i) Dans \mathbb{R} , les intervalles sont à la fois les parties connexes et convexes.

Exemple 2. Un sous-espace vectoriel de *E* est convexe.

Remarque 3. Une partie convexe est connexe.

[**BMP**] p. 26

(ii) Une intersection de parties convexes est convexe.

b. Enveloppes convexes

Proposition 4.

Définition 5. Soit $A \subseteq E$. On appelle **enveloppe convexe** de A le plus petit (au sens de l'inclusion) convexe contenant A. On la note Conv(A).

[**GOU21**] p. 51

Proposition 6. Soit $A \subseteq E$. Alors,

$$x \in \operatorname{Conv}(A) \iff x = \sum_{i=1}^{n} \lambda_i x_i \text{ avec } x_1, \dots, x_n \in A \text{ et } \lambda_1, \dots, \lambda_n \in \mathbb{R}^+ \text{ tels que } \sum_{i=1}^{n} \lambda_i = 1$$

Théorème 7 (Carathéodory). Soit $A \subseteq E$. On suppose que E est un espace vectoriel normé de dimension finie n. Alors, tout élément de Conv(A) est combinaison convexe de n+1 éléments de A.

p. 54

Application 8. Soit $A \subseteq E$ compact. On suppose que E est un espace vectoriel normé de dimension finie. Alors Conv(A) est compacte.

Proposition 9. On suppose que E est un espace vectoriel normé. Alors, pour toute partie convexe C de E, \overline{C} et \mathring{C} sont convexes.

Théorème 10 (Hahn-Banach géométrique). On se place dans le cas où E est un espace de Hilbert sur \mathbb{R} . Soit C une partie de E convexe compacte. Alors, si $x \notin C$, il existe $f \in E'$ et $\alpha \in \mathbb{R}$ tels que

$$\forall y \in C, f(x) < \alpha < f(y)$$

Corollaire 11. On se place dans le cas où *E* est un espace de Hilbert sur \mathbb{R} . Soit $A \subseteq E$. Alors,

$$x \in \overline{\operatorname{Conv}(A)} \iff \forall f \in H', f(x) \le \sup_{y \in A} f(y)$$

2. Fonctions convexes

On munit E d'une norme $\|.\|$. Soit I une partie convexe de E.

Définition 12. — Une fonction $f: I \to \mathbb{R}$ est **convexe** si

$$\forall x, y \in I, \forall t \in [0, 1], f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$$

— Une fonction $f: I \to \mathbb{R}$ est **concave** si -f est convexe.

Remarque 13. Les définitions de *f* strictement convexe et *f* strictement concave s'obtiennent en remplaçant les inégalités larges par des inégalités strictes dans la définition précédente.

Exemple 14. $-x \mapsto ||x||$ est convexe sur E.

— exp est convexe sur \mathbb{R} .

Proposition 15. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si son épigraphe est convexe dans $E \times \mathbb{R}$.

Théorème 16. Une fonction $f: I \to \mathbb{R}$ est convexe si et seulement si $\forall x, y \in I, t \mapsto f((1-t)x+ty)$ est convexe sur [0,1].

[**BMP**] p. 97

p. 133

[ROM19-

1] p. 225 Ce dernier théorème justifie que l'étude des fonctions convexes se ramène à l'étude des fonctions convexes sur un intervalle réel.

Proposition 17. — Une combinaison linéaire à coefficients positifs de fonctions convexes est convexe.

- La composée $\varphi \circ g$ d'une fonction convexe croissante $\varphi : J \to \mathbb{R}$ avec une fonction fonction convexe $g : I \to J$ est croissante.
- Une limite simple d'une suite de fonctions convexes est convexe.

3. Fonctions log-convexes

Définition 18. On dit qu'une fonction $f: I \to \mathbb{R}^+_*$ est **log-convexe** si $\ln \circ f$ est convexe sur I.

p. 228

p. 364

Proposition 19. Une fonction log-convexe est convexe.

Contre-exemple 20. $x \mapsto x$ est convexe mais non log-convexe.

Théorème 21. Pour une fonction $f: I \to \mathbb{R}^+_*$, les assertions suivantes sont équivalentes :

- (i) *f* est log-convexe.
- (ii) $\forall \alpha > 0, x \mapsto \alpha^x f(x)$ est convexe.
- (iii) $\forall x, y \in I, \forall t \in [0, 1], f((1 t)x + ty) \le (f(x))^{1 t} (f(y))^t$.
- (iv) $\forall \alpha > 0$, f^{α} est convexe.

Lemme 22. La fonction Γ définie pour tout x > 0 par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ vérifie :

- (i) $\forall x \in \mathbb{R}^+_*$, $\Gamma(x+1) = x\Gamma(x)$.
- (ii) $\Gamma(1) = 1$.
- (iii) Γ est log-convexe sur \mathbb{R}_*^+ .

[DEV]

Théorème 23 (Bohr-Mollerup). Soit $f : \mathbb{R}^+_* \to \mathbb{R}^+$ vérifiant le Point (i), Point (ii) et Point (iii) du Lemme 22. Alors $f = \Gamma$.

Remarque 24. À la fin de la preuve, on obtient une formule due à Gauss :

$$\forall x \in]0,1], \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{(x+n)\dots(x+1)x}$$

que l'on peut aisément étendre à \mathbb{R}_*^+ entier.

II - Inégalités de convexité

1. Inégalités pour des familles de réels

Proposition 25 (Inégalité de Hölder). Soient p, q > 0 tels que $\frac{1}{p} + \frac{1}{q} = 1$. Alors,

[GOU20] p. 97

$$\forall a_1, \dots, a_n, b_1, \dots, b_n \ge 0, \sum_{i=1}^n a_i b_i \le \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

Proposition 26 (Inégalité de Minkowski). Soit $p \ge 1$. Alors,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n \ge 0, \left(\sum_{i=1}^n |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n y_i^p\right)^{\frac{1}{p}}$$

Proposition 27 (Comparaison des moyennes harmonique, géométrique et arithmétique). Pour toute suite finie $x = (x_i)$ de n réels strictement positifs, on a :

[ROM19-1] p. 242

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \le \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Inégalités en théorie de l'intégration

Proposition 28 (Inégalité de Jensen). Si $f : \mathbb{R} \to \mathbb{R}$ est convexe, alors pour toute fonction u continue sur un intervalle [a, b], on a :

$$f\left(\frac{1}{b-a}\int_{a}^{b}u(t)\,\mathrm{d}t\right) \leq \frac{1}{b-a}\int_{a}^{b}f\circ u(t)\,\mathrm{d}t$$

Théorème 29 (Inégalité de Hölder). Soient $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1, f \in \mathcal{L}_p$ et $g \in \mathcal{L}_q$. Alors $fg \in \mathcal{L}_1$ et

[**G-K**] p. 209

$$||fg||_1 \le ||f||_p ||g||_q$$

Remarque 30. C'est encore vrai pour $q = +\infty$ en convenant que $\frac{1}{+\infty} = 0$.

Application 31. Dans un espace de mesure finie,

$$1 \le p < q \le +\infty \implies L_q \subseteq L_p$$

Théorème 32 (Inégalité de Minkowski).

$$\forall f, g \in \mathcal{L}_p, \|f + g\|_p \le \|f\|_p + \|g\|_p$$

III - Convexité et optimisation

1. Pour les fonctions convexes

Soit $I \subseteq \mathbb{R}$ un intervalle réel non réduit à un point.

Proposition 33. Une fonction $f : \mathbb{R} \to \mathbb{R}$ est constante si et seulement si elle est convexe et majorée.

Contre-exemple 34. La fonction f définie sur \mathbb{R}^+ par $f(x) = \frac{1}{1+x}$ est convexe, majorée, mais non constante.

Proposition 35. Si $f: I \to \mathbb{R}$ est convexe et est dérivable en un point $\alpha \in \mathring{I}$ tel que $f'(\alpha) = 0$, alors f admet un minimum global en α .

Proposition 36. Si $f: I \to \mathbb{R}$ est convexe et admet un minimum local, alors ce minimum est global.

2. Dans un espace de Hilbert

Pour toute la suite, on fixe H un espace de Hilbert de norme $\|.\|$ et on note $\langle .,. \rangle$ le produit scalaire associé.

[LI] p. 32

[ROM19-1]

p. 234

Lemme 37 (Identité du parallélogramme).

$$\forall x, y \in H, \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 \|y\|^2)$$

et cette identité caractérise les normes issues d'un produit scalaire.

[DEV]

Théorème 38 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide.

Alors:

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x, C) = \inf_{z \in C} ||x - z|| = d(x, y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \langle x - P_C(x), z - P_C(x) \rangle \leq 0$$

Théorème 39. Si F est un sous espace vectoriel fermé dans H, alors P_F est une application linéaire continue. De plus, pour tout $x \in H$, $P_F(x)$ est l'unique point $y \in F$ tel que $x - y \in F^{\perp}$.

Théorème 40. Si *F* est un sous espace vectoriel fermé dans *H*, alors

$$H = F \oplus F^{\perp}$$

et P_F est la projection sur F parallèlement à F^{\perp} : c'est la **projection orthogonale** sur F.

Corollaire 41. Soit *F* un sous-espace vectoriel de *H*. Alors,

$$\overline{F} = H \iff F^{\perp} = 0$$

Théorème 42 (de représentation de Riesz).

$$\forall \varphi \in H', \exists ! y \in H, \text{ tel que } \forall x \in H, \varphi(x) = \langle x, y \rangle$$

et de plus, $|||\varphi||| = ||y||$.

Corollaire 43.

$$\forall T \in H', \exists ! U \in H' \text{ tel que } \forall x, y \in H, \langle T(x), y \rangle = \langle x, U(y) \rangle$$

On note alors $U = T^*$: c'est **l'adjoint** de T. On a alors $|||T||| = |||T^*|||$.

Application 44. L'application

$$\varphi: \begin{array}{cc} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g: f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

[**Z-Q**] p. 222

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3^e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

 $\label{limits} \verb| https://www.editions-ellipses.fr/accueil/6558-cours-damalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html. \\$

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. *Éléments d'analyse réelle*. 2^e éd. EDP Sciences, 6 juin 2019.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.