[LI]

p. 27

213 Espaces de Hilbert. Exemples d'applications.

I - Généralités

1. Espaces préhilbertiens

Définition 1. Soit H un espace vectoriel réel (resp. complexe). On appelle **produit scalaire** sur H une forme bilinéaire $\langle .,. \rangle$ telle que :

- (i) $\forall y \in H, x \mapsto \langle x, y \rangle$ est une forme linéaire.
- (ii) $\forall x \in H, \langle x, x \rangle \ge 0$ avec égalité si et seulement si x = 0.
- (iii) $\forall x, y \in H, \langle x, y \rangle = \langle y, x \rangle \text{ (resp. } \langle x, y \rangle = \overline{\langle y, x \rangle} \text{)}.$

Remarque 2. Dans le cas complexe, on a donc

$$\forall x, y \in H, \forall \lambda \in \mathbb{C}, \langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

Définition 3. En reprenant les notations de la définition, si H est muni d'un produit scalaire, on dit que H est un espace **préhilbertien**.

Exemple 4. — \mathbb{C}^n muni de

$$\langle .,. \rangle : ((x_i)_{i \in \llbracket 1,n \rrbracket}, (y_i)_{i \in \llbracket 1,n \rrbracket}) \mapsto \sum_{i=1}^n x_i \overline{y_i}$$

est un espace préhilbertien.

— Plus généralement, on peut définit d'autres produits scalaires sur \mathbb{R}^n ou \mathbb{C}^n en se donnant un poids $\omega = (\omega_1, ..., \omega_n)$ où $\forall i \in [1, n], \omega > 0$. Il suffit de munir l'espace produit du produit scalaire suivant :

$$\langle .,. \rangle_{\omega} : ((x_i)_{i \in \llbracket 1,n \rrbracket}, (y_i)_{i \in \llbracket 1,n \rrbracket}) \mapsto \sum_{i=1}^n \omega_i x_i \overline{y_i}$$

Dans toute la suite, on considérera un espace préhilbertien $(H, \langle ., . \rangle)$ sur le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Notation 5. Puisque $\langle .,. \rangle \ge 0$, on peut poser

$$\|.\| = \sqrt{\langle .,. \rangle}$$

Proposition 6 (Identités de polarisation). Soient $x, y \in H$.

(i)
$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$
 (si $\mathbb{K} = \mathbb{R}$).

(ii)
$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^2$$
 (si $\mathbb{K} = \mathbb{C}$).

Théorème 7 (Inégalité de Cauchy-Schwarz).

$$\forall x, y \in H, |\langle x, y \rangle| \le ||x|| ||y||$$

avec égalité si et seulement si x et y sont colinéaires.

Corollaire 8. $\|.\|$ définit une norme sur H, ce qui fait de $(H, \|.\|)$ un espace vectoriel normé.

Proposition 9 (Identité du parallélogramme).

$$\forall x, y \in H, \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 \|y\|^2)$$

et cette identité caractérise les normes issues d'un produit scalaire.

2. Orthogonalité

Définition 10. On dit que deux vecteurs x et y de H sont orthogonaux si

 $\langle x, y \rangle = 0$

et on le note $x \perp y$.

Exemple 11. Dans \mathbb{R}^2 muni de son produit scalaire usuel, on a $(-1,1) \perp (1,1)$.

Remarque 12 (Théorème de Pythagore). Si $\mathbb{K} = \mathbb{R}$, par la Proposition 6,

$$\forall x, y \in H, x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

Définition 13. L'orthogonal d'une partie $A \subseteq H$ est l'ensemble

$$A^{\perp} = \{ y \in H \mid \forall x \in A, x \perp y \}$$

Proposition 14. Soit $A \subseteq H$.

- (i) A^{\perp} est un sous-espace vectoriel fermé de H.
- (ii) $A^{\perp} = (\operatorname{Vect}(A))^{\perp}$.
- (iii) $A^{\perp} = (\overline{A})^{\perp}$.

p. 31

p. 62

[**BMP**] p. 99

3. Espaces de Hilbert

Définition 15. Si $(H, \|.\|)$ est complet, on dit que H est un **espace de Hilbert**.

p. 91

On suppose dans la suite que $(H, \|.\|)$ est un espace de Hilbert.

Exemple 16. — Tout espace euclidien ou hermitien est un espace de Hilbert.

— L'ensemble des suites de nombres complexes de carré sommables

$$\ell_2(\mathbb{N}) = \{(x_n) \in \mathbb{C}^2 \mid \sum_{n=0}^{+\infty} |x_n|^2 < +\infty \}$$

muni du produit scalaire hermitien

$$\langle .,. \rangle : ((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) \mapsto \sum_{n=0}^{+\infty} x_n \overline{y_n}$$

est un espace de Hilbert.

II - Le théorème de projection sur un convexe fermé et ses conséquences

1. Théorème de projection

[DEV]

Théorème 17 (Projection sur un convexe fermé). Soit $C \subseteq H$ un convexe fermé non-vide. Alors :

$$\forall x \in H, \exists ! y \in C \text{ tel que } d(x,C) = \inf_{z \in C} ||x - z|| = d(x,y)$$

On peut donc noter $y = P_C(x)$, le **projeté orthogonal de** x **sur** C. Il s'agit de l'unique point de C vérifiant

$$\forall z \in C, \langle x - P_C(x), z - P_C(x) \rangle \le 0 \tag{*}$$

Remarque 18. En dimension finie, dans un espace euclidien ou hermitien, on peut projeter sur tous les fermés. On perd cependant l'unicité et la caractérisation angulaire.

[**BMP**] p. 96

[LI]

p. 32

Proposition 19. Soit $C \subseteq H$ un convexe fermé non-vide. L'application P_C est lipschitzienne de rapport 1 et est, en particulier, continue.

2. Décomposition en somme directe orthogonale

Théorème 20 (Projection sur un sous-espace fermé). Soit F un sous-espace vectoriel fermé de H.

(i) Si $x \in H$, le projeté $P_F(x)$ de x sur F est l'unique élément $p \in H$ qui vérifie

$$p \in F$$
 et $x - p \in F^{\perp}$

- (ii) $P_F: H \to F$ est linéaire, continue, surjective.
- (iii) $H = F \oplus F^{\perp}$ et P_F est le projecteur sur F associé à cette décomposition.
- (iv) Soient $x, x_1, x_2 \in H$. On a:

$$x = x_1 + x_2 \text{ avec } x_1 \in F, x_2 \in F^{\perp} \iff x_1 = P_F(x) \text{ et } x_2 = P_{F^{\perp}}(x)$$

Contre-exemple 21. On considère le sous-espace vectoriel de $\ell_2(\mathbb{N})$ constitué des suites nulles à partir d'un certain rang. Alors $F^{\perp} = \{0\}$, et ainsi $H \neq F \oplus F^{\perp}$.

Corollaire 22. Soit *F* un sous-espace vectoriel de *H*. Alors,

$$F^{\perp \perp} = \overline{F}$$

Corollaire 23. Soit *F* un sous-espace vectoriel de *H*. Alors,

$$\overline{F} = H \iff F^{\perp} = 0$$

3. Dualité dans un espace de Hilbert

Théorème 24 (de représentation de Riesz). L'application

$$\Phi: \begin{array}{ccc} H & \to & H' \\ y & \mapsto & (x \mapsto \langle x, y \rangle) \end{array}$$

est une isométrie linéaire bijective de H sur son dual topologique H'.

Remarque 25. Cela signifie que:

$$\forall \varphi \in H', \exists ! y \in H, \text{ tel que } \forall x \in H, \varphi(x) = \langle x, y \rangle$$

et de plus, $\|\varphi\| = \|y\|$.

Application 26 (Existence de l'adjoint). Soit $u \in \mathcal{L}(H)$. Il existe un unique $v \in \mathcal{L}(H)$ tel que :

$$\forall x, y \in H, \langle u(x), y \rangle = \langle x, v(y) \rangle$$

On dit que v est **l'adjoint** de u et on note généralement $v = u^*$.

[DEV]

Application 27 (Dual de L_p). Soit (X, \mathcal{A}, μ) un espace mesuré de mesure finie. On note $\forall p \in]1,2[$, $L_p = L_p(X,\mathcal{A},\mu)$. L'application

$$\varphi: \begin{array}{ll} L_q & \to (L_p)' \\ g & \mapsto \left(\varphi_g: f \mapsto \int_X f g \, \mathrm{d}\mu\right) \end{array} \qquad \text{où } \frac{1}{p} + \frac{1}{q} = 1$$

est une isométrie linéaire surjective. C'est donc un isomorphisme isométrique.

III - Bases hilbertiennes

Définition 28. On dit qu'une famille $(e_i)_{i \in I}$ d'éléments de H est **orthonormée** de H si :

[**LI**] p. 41

[Z-Q]

p. 222

$$\forall i, j \in I, \langle e_i, e_j \rangle = \delta_{i,j}$$

Exemple 29. Dans $\ell_2(\mathbb{N})$, la famille $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, u_n = (0, \dots, 0, \underbrace{1}_{n\text{-ième position}}, 0\dots)$$

est orthonormée.

Proposition 30. Toute famille orthonormée est libre.

Proposition 31 (Inégalité de Bessel). Soient $x \in H$ et $(e_i)_{i \in I}$ une famille orthonormée de H. Alors,

$$\sum_{i \in I} |\langle x, e_i \rangle| \le ||x||$$

Définition 32. On dit qu'une famille $(e_i)_{i \in I}$ d'éléments de H est une **base** de H si elle est orthonormée et totale (ie. $\text{Vect}(e_i)_{i \in I}$ est dense dans H).

Théorème 33. (i) Tout espace de Hilbert admet une base hilbertienne.

(ii) Tout espace de Hilbert séparable (ie. admettant une partie dénombrable dense) admet une base hilbertienne dénombrable. [**BMP**] p. 108

Exemple 34. \mathbb{K}^n est séparable pour tout entier n et L_p aussi pour tout $p \in [1, +\infty[$. On a donc existence d'une base hilbertienne dénombrable pour ces espaces.

Théorème 35. Soit H un espace de Hilbert séparable et $(e_n)_{n \in I}$ une famille orthonormée dénombrable de H. Les propriétés suivantes sont équivalentes :

- (i) La famille orthonormée $(e_n)_{n\in I}$ est une base hilbertienne de H.
- (ii) $\forall x \in H$, $x = \sum_{n=0}^{+\infty} \langle x, e_n \rangle e_n$.
- (iii) $\forall x \in H$, $||x||_2 = \sum_{n=0}^{+\infty} |\langle x, e_n \rangle|^2$.
- (iv) L'application

$$\Delta: \begin{array}{ccc} H & \to & \ell_2(\mathbb{N}) \\ x & \mapsto & (\langle x, e_n \rangle_{n \in \mathbb{N}} \end{array}$$

est une isométrie linéaire bijective.

Remarque 36. L'égalité du Théorème 35 Point (iii) est appelée égalité de Parseval.

Corollaire 37. Tous les espaces de Hilbert séparables sont isométriquement isomorphes à $\ell_2(\mathbb{N})$.

[LI] p. 45

IV - L'espace L_2

1. Aspect hilbertien

Soit (X, \mathcal{A}, μ) un espace mesuré.

[**BMP**] p. 92

Notation 38. On note $L_p = L_p(X, \mathcal{A}, \mu)$ pour tout $p \in [1, +\infty]$.

Définition 39. On considère la forme bilinéaire suivante sur L_2 :

$$\langle .,.\rangle : (f,g) \mapsto \int_X f\overline{g} \,\mathrm{d}\mu$$

C'est un produit scalaire hermitien, ce qui confère à $(L_2, \langle .,. \rangle)$ une structure d'espace préhilbertien.

Remarque 40. La norme associée au produit scalaire précédent est la norme $\|.\|_2$ de L_2 .

Théorème 41 (Riesz-Fischer). Pour tout $p \in [1, +\infty]$, L_p est complet pour la norme $\|.\|_p$.

[LI] p. 10 Corollaire 42. L_2 est un espace de Hilbert.

2. Polynômes orthogonaux

Soit *I* un intervalle de \mathbb{R} . On pose $\forall n \in \mathbb{N}$, $g_n : x \mapsto x^n$.

[**BMP**] p. 110

Définition 43. On appelle **fonction poids** une fonction $\rho : I \to \mathbb{R}$ mesurable, positive et telle que $\forall n \in \mathbb{N}, \rho g_n \in L_1(I)$.

Soit $\rho: I \to \mathbb{R}$ une fonction poids.

Notation 44. On note $L_2(I, \rho)$ l'espace des fonctions de carré intégrable pour la mesure de densité ρ par rapport à la mesure de Lebesgue.

Proposition 45. Muni de

$$\langle .,. \rangle : (f,g) \mapsto \int_I f(x) \overline{g(x)} \rho(x) dx$$

 $L_2(I, \rho)$ est un espace de Hilbert.

Théorème 46. Il existe une unique famille (P_n) de polynômes unitaires orthogonaux deux-à-deux telle que $\deg(P_n) = n$ pour tout entier n. C'est la famille de **polynômes orthogonaux** associée à ρ sur I.

Exemple 47 (Polynômes de Hermite). Si $\forall x \in I$, $\rho(x) = e^{-x^2}$, alors

$$\forall n \in \mathbb{N}, \forall x \in I, P_n(x) = \frac{(-1)^n}{2^n} e^{x^2} \frac{\partial}{\partial x^n} \left(e^{-x^2} \right)$$

Lemme 48. On suppose que $\forall n \in \mathbb{N}$, $g_n \in L_1(I, \rho)$ et on considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I. Alors $\forall n \in \mathbb{N}$, $g_n \in L_2(I, \rho)$. En particulier, l'algorithme de Gram-Schmidt a bien du sens et (P_n) est bien définie.

p. 140

Application 49. On considère (P_n) la famille des polynômes orthogonaux associée à ρ sur I et on suppose qu'il existe a > 0 tel que

$$\int_{I} e^{a|x|} \rho(x) \, \mathrm{d}x < +\infty$$

alors (P_n) est une base hilbertienne de $L_2(I, \rho)$ pour la norme $\|.\|_2$.

Contre-exemple 50. On considère, sur $I = \mathbb{R}_*^+$, la fonction poids $\rho : x \mapsto x^{-\ln(x)}$. Alors, la famille des g_n n'est pas totale. La famille des polynômes orthogonaux associée à ce poids particulier n'est donc pas totale non plus : ce n'est pas une base hilbertienne.

3. Séries de Fourier

Notation 51. — Pour tout $p \in [1, +\infty]$, on note $L_p^{2\pi}$ l'espace des fonctions $f : \mathbb{R} \to \mathbb{C}$, 2π -périodiques et mesurables, telles que $||f||_p < +\infty$.

[**Z-Q**] p. 73

— Pour tout $n \in \mathbb{Z}$, on note e_n la fonction 2π -périodique définie pour tout $t \in \mathbb{R}$ par $e_n(t) = e^{int}$.

Proposition 52. $L_2^{2\pi}$ est un espace de Hilbert pour le produit scalaire

$$\langle .,. \rangle : (f,g) \mapsto \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$$

Théorème 53. La famille $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne de $L_2^{2\pi}$.

[**BMP**] p. 123

Corollaire 54.

$$\forall f \in L_2^{2\pi}, f = \sum_{n=-\infty}^{+\infty} \langle f, e_n \rangle e_n$$

Exemple 55. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

[GOU20] p. 272

$$\frac{\pi^4}{90} = \|f\|_2 = \sum_{n=0}^{+\infty} \frac{1}{n^4}$$

Remarque56. L'égalité du Corollaire 54 est valable dans $L_2^{2\pi}$, elle signifie donc que

[BMP] p. 124

$$\left\| \sum_{n=-N}^{N} \langle f, e_n \rangle e_n - f \right\|_2 \longrightarrow_{N \to +\infty} 0$$

[LI] p. 32

Annexes

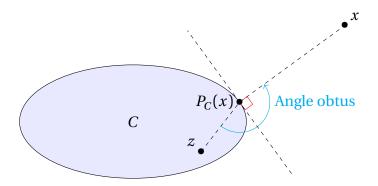


FIGURE 1 – Illustration du théorème de projection sur un convexe fermé.

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.