Leçon 144 : Racines d'un polynôme. Fonctions symétriques élémentaires. Exemples et applications.

Soit $(\mathbb{K}, +, .)$ un corps commutatif. Soit $P \in \mathbb{K}[X]$

1 Racines d'un polynôme

1.1 Racines et multiplicité

Définition 1 (ROM 362). On dit que $\alpha \in \mathbb{K}$ est racine de P si $P(\alpha) = 0$.

Exemple 2 (ROM 362). Un polynôme constant non nul n'a pas de racine et le polynôme nul a tous les éléments de K comme racine.

Proposition 3 (ROM 362). $\forall \alpha \in \mathbb{K}, P(\alpha) = 0 \iff \exists Q \in \mathbb{K}[X], P = Q(X - \alpha)$. Prérequis anneau principal (euclidien) pour div euclidienne

Définition 4 (ROM 362). Supposons que P soit non constant. Soient $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}^*$. On dit que α est une racine d'ordre (ou de multiplicité) m de P si $(X - \alpha)^m$ divise P et $(X - \alpha)^{m+1}$ ne divise pas P.

Si m=1, on dit que α est une racine simple.

Remarque 5 (ROM 362). La mutliplicité m d'une racine vérifie $m \in [1, deg(P)]$.

Théorème 6 (ROM 362). Soit $\alpha_1,...,\alpha_r \in \mathbb{K}$ deux à deux distincts et $m_1,...,m_r \in \mathbb{N}^*$. Supposons P non constant. LASSE:

- 1. $\forall k \in [1, r], \alpha_k$ est racine de P de multiplicité m_k
- 2. $\exists \mathbb{Q} \in \mathbb{K}[X]$, tel que $P(X) = Q(X) \prod_{k=1}^{r} (X \alpha_k)^{m_k}$ et $\forall k \in [1, r]$, $Q(\alpha_k) \neq 0$.

Corollaire 7 (ROM 363). Si P est non constant et admet $r \ge 1$ racines distinctes de multiplicités $m_1, ..., m_r$, alors $deg(P) \ge \sum_{k=1}^r m_k$.

Corollaire 8 (TL2 297). Si $P \in \mathbb{K}_n[X]$ de degré n admet n+1 racines deux à deux distincts, alors P est le polynôme nul.

Exemple 9 (ROM 363). Si $P \in \mathbb{K}_n[X]$ admet plus de n racines comptés avec multiplicités, alors P est le polynôme nul.

Remarque 10 (ROM 363). Ce n'est plus valable pour les polnômes à coefficients dans un anneau commutatif unitaire : $3X \in \mathbb{Z}/6\mathbb{Z}$ est de degré 1 mais possède 0 et 2 comme racines.

On peut mettre thm de Taylor si on veut.. (ROM 366

1.2 Polynôme scindé et irréductibilité

REVOIR L'OOOORDRE

Définition 11 (ROM 364). On dit que P est scindé sur \mathbb{K} s'il est constant ou de degré $n \geq 1$ et admet $r \geq 1$ racines distinctes $\alpha_1, ..., \alpha_r$ dans \mathbb{K} de multiplicités respectives $m_1, ..., m_r$ avec $\sum_{i=1}^r m_i = n$.

Si tous les m_i sont égaux à 1, on dit que le polynôme est scindé à racines simples.

Exemple 12 (No ref). $(X+2)(X-3) \in \mathbb{R}[X]$ est scindé à racine simple.

Proposition 13 (ROM 364). Un polynôme scindé non constant est de la forme $P(X) = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{m_k}$.

Définition 14 (ROM 370). Un polynôme $P \in \mathbb{K}[X] \setminus \{0\}$ est dit irréductible s'il est non constant et n'est divisible que par les constantes non nulles ou les polynômes λP , avec $\lambda \in \mathbb{K}^*$.

Exemple 15 (ROM 370). $X^2 - 2$ est réductible dans $\mathbb{R}[X]$ avec $-\sqrt{2}$, $\sqrt{2}$ comme racines simples, mais pas dans $\mathbb{Q}[X]$.

Proposition 16 (un peu ROM 371). Si $deg(P) \in \{2,3\}$, P est irréductible si et seulement si il n'a pas de racines.

Contre-exemple 17 (No ref). $(X+1)^2 \in \mathbb{R}[X]$ est n'est pas irréductible, pourtant il n'admet pas de racines dans \mathbb{R} .

Théorème 18 (ROM 371 raccourci). Tout polynôme non constant P est produit de polynômes irréductibles et une telle décomposition est unique (à permutation près).

Définition 19 (ROM 364). On dit que \mathbb{K} est algébriquement clos si tout polynôme $P \in \mathbb{K}[X]$ est scindé sur \mathbb{K} .

Théorème 20 (ROM 381). [D'Alembert Gauss] $\mathbb C$ est algébriquement clos.

Exemple 21 (No ref). $P = X^2 + 1$ est irréductible sur $\mathbb{R}[X]$ car il n'a pas de racines réelles; cependant on peut le scinder sur \mathbb{C} par P = (X - i)(X + i).

1.3 Fonctions symétriques élémentaires

Permet de relier racines et coefficients

Définition 22 (ROM 367). Soit $n \in \mathbb{N}$. On définit les fonctions symétriques élémentaires $\sigma_{n,k} : \mathbb{K}^n \to \mathbb{K}$, l'entier k étant compris entre 0 et n, par : $\forall \alpha = (\alpha_i)_{1 \le i \le n} \in K^n$,

$$\sigma_{n,k}(\alpha) = \begin{cases} 1 & \text{si } k = 0\\ \sum_{1 \le i_1 \le \dots \le i_k \le n} \alpha_{i_1} \dots \alpha_{i_k} & \text{si } k \in \{1, \dots, n\} \end{cases}$$

Exemple 23 (ROM 367).
$$\sigma_{n,1}(\alpha) = \sum_{i=1}^n \alpha_i$$
 et $\sigma_{n,n}(\alpha) = \prod_{i=1}^n \alpha_i$.

Remarque 24. ROM 367 La qualification "symétrique" vient du fait que pour toute permutation $\tau \in S_n$, on a $\sigma_{n,k}(\alpha_{\tau(1)},...,\alpha_{\tau(n)}) = \sigma_{n,n}(\alpha) = \prod_{i=1}^n \alpha_i$

Théorème 25 (ROM 368). Si $P(X) = \prod_{k=1}^{n} (X - \alpha_k)$ est un polynôme unitaire de degré $n \ge 1$ scindé dans $\mathbb{K}[X]$, on a alors $P(X) = \sum_{k=0}^{n} a_k X^{n-k}$ avec $\forall k \in \{0, 1, ..., n\}, a_k = (-1)^k \sigma_{n,k}(\alpha_1, ..., \alpha_n)$.

Application 26 (ROM 369 - 370). [Poincaré] Formule de Poincaré : Si $(A_k)_{1 \le k \le n}$ est une suite d'évènements d'un espace probabilisé $(\Omega, \mathcal{B}, \mathbb{P})$, on a alors :

$$\mathbb{P}(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

2 Cas complexe

On se place dans le cas $\mathbb{K} = \mathbb{C}$.

2.1 Localisation des racines

Définition 27 (TL2 302). Soit $P = X^p + \sum_{k=0}^{p-1} a_k X^k \in \mathbb{K}[X]$ un polynôme unitaire de degré $p \geq 1$. On appelle matrice compagnon du polynôme P,

noté
$$C_P$$
 la matrice
$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \dots & 1 & -a_{p-1} \end{pmatrix} \in M_p(\mathbb{K}).$$

Proposition 28 (TL2 302). Soient $P \in \mathbb{K}[X]$ un polynôme unitaire de degré $p \geq 1$. $\chi_{C_P} = P$.

Remarque 29 (No ref). Rechercher les racines d'un polynôme $P \in \mathbb{K}[X]$ revient donc à chercher les valeurs propres de sa matrice compagnon. Si P non unitaire on multiplie par inverse de son coef dominant.

Notation 30 (ROM 650). On note pour tout $i \in [1, n]$ $L_i = \sum_{j \neq i} |a_{i,j}|$ et $C_i = \sum_{j \neq i} |a_{j,i}|$. On note également $L = \max_{1 \leq i \leq n} \{L_i + |a_{i,i}|\}$ et $C = \max_{1 \leq i \leq n} \{C_i + |a_{i,i}|\}$

Théorème 31 (ROM 651). [Gerschgöring-Hadamard] Soit $\mathbb{K} = \mathbb{C}$ et $\lambda \in Sp(A)$. Il existe un indice $i \in \{1, ..., n\}$ tel que $|\lambda - a_{i,i}| \leq L_i$

Corollaire 32 (ROM 651). Pour toute valeur propre $\lambda \in \mathbb{C}$ de A on a $|\lambda| \leq \min\{L, C\}$.

une app: mat à diag dominante est inversible

2.2 Racines n-ième d'un nombre complexe

On s'intéresse dans cette partie aux racines des polynômes de la forme $X^n - \alpha$, où $\alpha \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

Définition 33 (ROM 378). Soit $\alpha \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On appelle racine n-ième de α tout nombre complexe z tel que $z^n = \alpha$.

Exemple 34 (ROM 378). 0 est l'unique racine n—ième de 0.

Proposition 35 (ROM 378). Soit $\alpha = \rho e^{i\theta}$, avec $\rho > 0$ et $\theta \in [-\pi, \pi[$. Alors, $z_0 = \sqrt[n]{\rho}e^{i\frac{\theta}{n}}$ est solution de $z^n = \alpha$. De plus, toute autre solution $z \in \mathbb{C}$ vérifie $\left(\frac{z}{z_0}\right)^n = 1$.

Définition 36 (ROM 379). Soit $n \in \mathbb{N}^*$. On appelle racine n-ième de l'unité toute racine n-ième de 1.

Notation 37. \mathbb{U}_n l'ensemble des racine n-ième de l'unité

Proposition 38 (ROM 379). Soit $n \in N^*$. Il y a exactement n racines n-ièmes de l'unité qui sont données par $w_k = e^{\frac{2ik\pi}{n}}$, pour tout $0 \le k \le n-1$.

Proposition 39 (ROM 379). Soit $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$. On a $z^n - 1 = \prod_{k=0}^{n-1} (z - \omega_k)$, où $\omega_k = e^{\frac{2i\pi k}{n}}$, pour tout $0 \le k \le n-1$, sont les racines n—ièmes.

Proposition 40 (ROM 379). \mathbb{U}_n est un groupe cyclique de \mathbb{C}^* d'ordre n engendré par $\omega_1 = e^{\frac{2i\pi}{n}}$.

Corollaire 41. Soit $n \in \mathbb{N}^*$ et $\alpha = \rho e^{i\theta} \in \mathbb{C}$. α a exactement n racines n-ième données par $u_k = u_0 \omega_k = \sqrt[n]{\rho} e^{i\frac{\theta}{n}} e^{\frac{2i\pi k}{n}}$

3 Applications

3.1 Réduction d'endomorphisme

On considère \mathbb{K} un corps, E un \mathbb{K} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$.

Proposition 42 (BER 958). λ est une valeur propre de u si et seulement si $\chi_u(\lambda) = 0$.

Proposition 43 (BER 959, Mettre celles qui nous intéresse, scindé sans racine mult.). Les propriétés suivantes sont équivalentes :

- 1. u est diagonalisable
- $2. E = \bigoplus_{\lambda \in Sp_K(u)} E_{\lambda}$
- 3. χ_u est scindé, et pour tout $\lambda \in Sp_K(u)$, on a $dim_K(E_\lambda) = m_\lambda$
- 4. $\prod_{\lambda \in Sp(u)} (X \lambda) \text{ annule } u$
- 5. il existe un polynôme P annulant u scindé sans racines multiples
- 6. μ_u est scindé sans racines multiples

Théorème 44 (ROM 676, GOU 174). u est trigonalisable si et seulement si son polynôme caractéristique est scindé.

Proposition 45 (DEV 2). Soit
$$A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_n & a_1 & \dots & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} \in$$

 $M_n(\mathbb{C})$ une matrice circulante. Posons $P(X) = \sum_{i=1}^n a_k X^{k-1}$. Alors $det(A) = \prod_{j=1}^n P(w^j)$ où $w = e^{2i\pi/n}$.

Application 46 (DEV 2). Soit P un polygone du plan complexe à n côtés. Notons $(z_1,...z_n) \in \mathbb{C}^n$ les affixes des sommets de P. On définit alors pas récurrence une suite de polygones $(P_k)_k$ avec $P_0 = P$ et où les sommets de P_{k+1} sont les milieux des arrêtes de P_k . Alors $(P_k)_k$ converge vers l'isobarycentre de P.

3.2 Corps de rupture

On considère dans cette partie un corps $\mathbb K.$

revoir avec leçon 141

Définition 47 (PER 70, ROM 418, BER 816). On dit qu'une extension \mathbb{L} de \mathbb{K} est un corps de rupture d'un polynôme non constant $P \in \mathbb{K}[X]$ si le polynôme P a une racine ω dans \mathbb{L} telle que $\mathbb{L} = \mathbb{K}[\omega]$.

Proposition 48 (No ref, pas sûre!). Soit \mathbb{L} le corps de rupture d'un polynôme P irréductible sur $\mathbb{K}[X]$. $[\mathbb{L} : \mathbb{K}] = deg(P)$

Théorème 49 (PER 70). Soit $P \in \mathbb{K}[X]$. Il existe un corps de rupture de P sur K, unique à isomorphisme près.

Exemple 50 (BER 818). Prenons $P = X(X^2 + 1) \in \mathbb{Q}[X]$. \mathbb{Q}/\mathbb{Q} et $\mathbb{Q}(i)/\mathbb{Q}$ sont deux corps de rupture de P. Ceci montre qu'il n'y a pas unicité. De plus ces extension ne sont pas isomorphe car elles n'ont pas le même degré A voir la derniere rem!!!

3.3 Polynômes cyclotomiques

Définition 51 (TL1 260, ou PER 80). Une racine primitive nème de l'unité est un générateur de \mathbb{U}_n

Notation 52. On note \mathbb{U}_n^* l'ensemble des racines primitives n-ème de l'unité.

Exemple 53 (No ref). $-1 \in \mathbb{U}_4$ mais ce n'est pas une racine primitive 4ème car $<-1>=\{1,-1\}$. C'est cependant une racine 2ème de l'unité

Proposition 54 (TL1 260, un peu). Les générateur de \mathbb{U}_n sont les $e^{i2k\pi/n}$ où $k \in [1, n-1]$ et $k \wedge n = 1$. Ainsi, $|\mathbb{U}_n^*| = \varphi(n)$, où φ est l'indicatrice d'Euler

Définition 55 (TL1 309). Le n-ème polynôme cyclotomique est le polynôme unitaire ϕ_n dont les racines sont les racines primitives n-ème de l'unité : $\phi_n(X) = \prod_{\xi \in \mathbb{U}_n^*} (X - \xi)$

Proposition 56 (TL1 309, PER 80). $deg(\phi_n) = \varphi(n)$

Exemple 57 (TL1 309). 1. $\phi_1(X) = X - 1$

- 2. Si p est premier, $\varphi_p(X) = \frac{X^p 1}{X 1} = X^{p-1} + ... + X + 1$
- 3. $\phi_4(X) = X^2 + 1$

Proposition 58 (TL1 309). Soit $n \ge 1$. Alors : $X^n - 1 = \prod_{d \mid n} \phi_d$

Théorème 59 (PER 82, DEV 1). Pour $n \ge 1$, $\varphi_n(X) \in \mathbb{Z}[X]$ est un polynôme irréductible et unitaire, donc irréductible dans $\mathbb{Q}[X]$ également.