Leçon 103 : Conjugaison dans un groupe. Exemples de sous-groupes distingués et de groupes quotients. Applications

On considère G un groupe noté multiplicativement et H un sous groupe de G.

1 Conjugaison dans un groupe

1.1 Notion de conjugaison

Proposition 1 (BER 130). 1. Soit $g \in G$. L'application de G dans G définie par $Int_a: x \mapsto gxg^{-1}$ est un automorphisme de G.

2. De plus, l'application $g \mapsto Int_g$ est un morphisme de groupe de G dans Aut(G).

Définition 2 (BER 130). L'automorphisme précédent est appelé la conjugaison par g.

Notation 3 (BER 131). Pour toute partie P de G et tout $g \in G$, on note gPg^{-1} l'image de P par Int_g , autrement dit $gPg^{-1} = \{gxg^{-1} | x \in P\}$

Proposition 4 (BER 131). gPg^{-1} est fini si et seulement si P est fini. Dans ce cas, on a pour tout $q \in G$, $|qPq^{-1}| = |P|$.

Définition 5 (BER 131). Deux éléments $x, x' \in G$ sont dits conjuguées dans G s'il existe $g \in G$ tel que $x' = gxg^{-1}$.

Définition 6 (BER 131). On appelle classe de conjugaison de x dans G l'ensemble $Conj_G(x)$ des éléments de G conjugués à x, c'est-à-dire l'ensemble $Conj_G(x) = \{gxg^{-1}|g \in G\}$.

Proposition 7 (BER 132). La relation "être conjugué dans G" est une relation d'équivalence. Les classes d'équivalences sont en faitles classes de conjugaison.

Exemple 8 (BER 132). Si G est abélien, $Conj_G(x) = \{x\}$ pour tout $x \in G$.

1.2 Sous-groupe distingué

Définition 9 (BER 135). On dit que H est distingué dans G si l'on a $ghg^{-1} \in H$ pour tout $h \in H$ et tout $g \in G$.

Exemple 10 (BER 136). 1. Si G est abélien, tout sous-groupe de G est distingué.

2. $\{1\}$ et G sont toujours des sous-groupes distingués de G.

Proposition 11 (BER 139). Soit $f: G \to G'$ un morphisme de groupes. Alors Ker(f) est un sous-groupe distingué de G.

Remarque 12 (BER 139). Pour démontrer qu'une partie H d'un groupe G est un sous-groupe distingué, on peut alors essayer de l'identifier au noyau d'un morphisme de groupes.

Exemple 13 (BER 139). Soit E un \mathbb{K} —ev de dimension finie, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'ensemble SL(E) des automorphisme de E de déterminant 1 est un sous-groupe distingué de GL(E) puisque c'est le noyau du morphisme déterminant $det: GL(E) \to \mathbb{K}^{\times}$.

Définition 14 (BER 140). On dit qu'un groupe G est simple si $G \neq \{Id_G\}$ et si $\{1_G\}$ et G sont les seuls sous-groupes distingués de G.

Exemple 15 (BER 140). GL(E) n'est pas un groupe simple, puisque l'on a vu que SL(E) est un sous-groupe distingué dans GL(E).

2 Groupe Quotient

2.1 Prérequis

Notation 16 (BER 145). Pour $a \in G$, on note $aH = \{ah | h \in H\}$ et $Ha = \{ha | h \in H\}$

Proposition 17 (BER 145). La relation $\sim \text{sur } G$ définie par $x \sim y \iff x^{-1}y \in H$ est une relation d'équivalence. De plus, on a $\overline{x} = xH$ pour tout $x \in G$.

Ainsi, on associe à un sous-groupe H la relation d'équivalence précédentes.

Exemple 18 (BER 146). Considérons le groupe \mathbb{Z} et un de ses sous-groupe $n\mathbb{Z}$, où $n \in \mathbb{N}$. La relation d'équivalence associée à H est enfaite la relation de congruence modulo n.

Définition 19 (BER 145). Un ensemble de la forme xH, $x \in G$ est appelé une classe à gauche modulo H. L'ensemble de ces classes à gauche est noté G/H.

Exemple 20 (BER 146). Reprenons l'exemple précédent. La classe à gauche d'un élément $x \in \mathbb{Z}$ est l'ensemble $x + n\mathbb{Z}$.

Proposition 21 (BER 146). Les classes à gauche de G modulo H sont les classe d'équivalence de la relation défini à la proposition 17 et forment alors une partition de G.

Définition 22 (BER 146). Le nombre de classes à gauche modulo H, lorsqu'il est fini, est appelé l'indice de H dans G et est noté [G:H]. Si G/H est un infini, on pose $[G:H] = +\infty$.

Exemple 23 (BER 146). L'ensemble quotient de notre est donc $\mathbb{Z}/n\mathbb{Z}$. Si n > 0, on a donc $[\mathbb{Z} : n\mathbb{Z}] = |\mathbb{Z}/n\mathbb{Z}| = n$. En revanche $[\mathbb{Z} : 0\mathbb{Z}] = +\infty$.

2.2 Autre vision des sous-groupe distingué

Ces notions permettent de donner une autre caractérisation des sousgroupes distingués

Proposition 24 (BER 147). LASSE:

- 1. H est distingué dans G
- 2. $\forall x \in G, xH = Hx$
- 3. $\forall x \in G, xHx^{-1} = H, \text{ où } xHx^{-1} := \{xhx^{-1} | h \in H\}$

Proposition 25 (BER 147). Tout sous groupe d'indice 2 est distingué dans G.

Théorème 26 (BER 148). [Lagrange] Supposons que G soit un groupe fini. Alors, on a

$$|G| = [G:H]|H|$$

En particulier, |H| divise |G|.

Avoir en tête réciproque fausse car A_4 pas de sous groupe d'ordre 6

2.3 Groupe quotient

On suppose dans cette partie que H est un sous-groupe distingué de G.

Proposition 27 (BER 237). La loi interne $(\overline{x}, \overline{y}) \in G/H \times G/H \mapsto \overline{xy} \in G/H$ est bien définie, de neutre $\overline{1_G}$, et induit sur G/H une structure de groupe. De plus, l'application $\pi: x \mapsto \overline{x}$ est un morphisme de groupes.

Définition 28 (BER 237). [blabla : la proposition motive la définition et l'appellation suivante] Le groupe G/H est appelé le groupe quotient de G par H.

Proposition 29 (BER 237). Pour tout $x \in G$, on a $\overline{x} = \overline{1_G} \iff x \ in H$.

Exemple 30 (BER 238). Soit $n \leq 1$. Le groupe $\mathbb{Z}/n\mathbb{Z}$ est le quotient de \mathbb{Z} par le sous-groupe $n\mathbb{Z}$.

Proposition 31 (BER 238). La projection canonique $\pi: G \to G/H$ est surjective, de noyau H.

Théorème 32 (BER 239). Soit $f: G \to G'$ un morphisme de groupes tel que $H \subset Ker(f)$. Alors, il existe un unique morphisme de groupes $\overline{f}: G/H \to G'$ tel que $f = \overline{f} \circ \pi$ (cf annexe).

Théorème 33 (BER 241). [théorème d'isomorphisme] Soient G, G' deux groupes et soit $f: G \to G'$ un morphisme de groupes. Alors le morphisme de groupes $\overline{f}: G/Ker(f) \to G'$ induit un isomorphisme de groupes $G/Ker(f) \simeq Im(f)$

Méthode 34 (BER 241). Ce théorème nous permet d'identifier un groupe quotient G/H à un groupe connu. On essaye tout d'abord d'identifier H à un morphisme de groupe $f: G \to G'$, et on calcule ensuite l'image de f.

Exemple 35 (BER 241). Cherchons à identifier $\mathbb{C}^{\times}/\mathbb{U}$. Pour cela remarquons que $\mathbb{U} = ker(f)$ où $f: z \mapsto |z|$ qui est un morphisme de groupes surjectif de C^{\times} dans \mathbb{R}_{+}^{\times} . Le théorème précédent nous donne donc $C^{\times}/\mathbb{U} \simeq \mathbb{R}_{+}^{\times}$.

Exemple 36 (BER 241). De même, en considérant le morphisme $f: \theta \in \mathbb{R} \mapsto e^{i\theta} \in \mathbb{U}$, on trouve que $\mathbb{R}/2\pi\mathbb{Z} \simeq \mathbb{U}$.

Remarque 37 (No ref). Dans les exemples on a omis une vérification. Pour utiliser le théorème d'isomorphisme il faut que le sous groupe soit distingué. Cependant ici, cela ne pose pas de problème car \mathbb{C}^{\times} et \mathbb{R} sont des groupes commutatifs et tout leurs sous-groupe sont donc distingués.

2.4 Exemple du centralisateur et application

Définition 38 (BER 136). Le centre d'un groupe est l'ensemble

$$Z(G) = \{ z \in G | zg = gz, \forall g \in G \}$$

Remarque 39 (BER 136). $Z(G) = G \iff G$ est abélien

Proposition 40 (BER 136). Z(G) est un sous-groupe distingué de G.

Application 41 (CAL 2). [DEV 1] Soit G un groupe d'ordre n et Z(G) son centre. On note p_G la probabilité que deux éléments h, g de G choisis indépendamment et de façon équiprobable commutent.

- 1. Si G est non abélien, $p \leq \frac{5}{8}$
- 2. Si k est le nombre de classe de conjugaison, alors $p=\frac{k}{n}$

3 L'exemple des permutations

Considérons E un ensemble à n < 1 éléments.

3.1 Prérequis essentielles

Définition 42 (BER 201). L'ensemble des bijections de E sur lui-même est un groupe pour la composition des applications, appelé groupe des permutations de E ou groupe symétrique sur E, et est noté $\mathfrak{S}(E)$. Un élément de $\mathfrak{S}(E)$ est appelé une permutation.

Théorème 43 (BER 204). [DEV bonus] Soit $\sigma \in \mathfrak{S}(E)$. Alors σ se décompose en produit de cycles à support disjoints, et cette décomposition est unique à l'ordre des facteurs près. Cette décomposition est donnée par : $\sigma = \prod_{\omega \in \Omega^*} \sigma_{\omega}$ où Ω^* représente l'ensemble des σ -orbites non réduite à un singleton.

Corollaire 44 (BER 206). $\mathfrak{S}(E)$ est engendré par les cycles.

Corollaire 45 (BER 207). $\mathfrak{S}(E)$ est engendré par les transpositions.

3.2 Conjugaison dans $\mathfrak{S}(E)$

Définition 46 (BER 211). Soit $n \ge 1$. Une partition de n est une suite d'entier $p = (p_k)_k$ décroissante, nulle à partir d'un certain rang, telle que $\sum_{k>1} p_k = n$. On note P(n) l'ensemble de ces partitions.

Définition 47 (BER 211). Soit $\sigma \in \mathfrak{S}(E)$. Le type de σ est la partition de n dont les éléments non nuls sont les cardinaux des diverses σ -orbites, rangés par ordre décroissant. On la note p_{σ}

Exemple 48 (BER 211). Si $\sigma = (13)(4765) \in \mathfrak{S}_9$, on a $p_{\sigma} = (4, 2, 1, 1)$.

Proposition 49 (BER 211). Deux permutations de $\mathfrak{S}(E)$ sont conjuguées si et seulement si elles sont de même type.

Corollaire 50 (BER 212). Notons C_E l'ensemble des classes de conjugaison de $\mathfrak{S}(E)$. L'application $\Phi: p \in \mathcal{P}(n) \mapsto Conj_{\mathfrak{S}(E)}(\sigma_p) \in C_E$ est une bijection de l'ensemble des partitions de n sur l'ensemble des classes de conjugaison de $\mathfrak{S}(E)$.

Méthode 51 (BER 212). Pour trouver toutes les classes de conjugaison de $\mathfrak{S}(E)$, il suffit donc de décomposer n en somme d'entiers strictement positifs décroissants de toutes les façons possibles.

Exemple 52 (BER 212). \mathfrak{S}_4 possède cinq classes de conjugaison distinctes représentées par (1234), (123), (12)(34), (12), Id

3.3 Le groupe alternée et simplicité

Définition 53 (ROM 46). On définit la signature de σ par l'élément $\epsilon(\sigma) = (-1)^r$, où r est le nombre de transposition dans la décomposistion en transposition de σ .

Proposition 54 (un peu ROM 47, BER 213). La signature est un morphisme.

Définition 55 (BER 215, ROM 49). Le groupe alterné, noté $\mathfrak{A}(E)$, est l'ensemble des permutations de $\mathfrak{S}(E)$ de signature 1.

Proposition 56 (BER 215). $\mathfrak{A}(E)$ est un sous groupe distingué de $\mathfrak{S}(E)$ comme novau du morphisme signature. On a donc $[\mathfrak{S}(E) : \mathcal{A}(E)] = 2$.

Corollaire 57 (BER 140). $\mathfrak{S}(E)$ n'est donc pas simple pour $n \geq 3$.

Lemme 58 (BER 216). Soit E un ensemble à n éléments. Si $n \geq 3$, le groupe alterné $\mathfrak{A}(E)$ est engendré par chacune des familles suivantes :

- 1. les produits de deux transpositions
- 2. les 3-cycles.

Théorème 59 (BER 217, ROM 50). [DEV 2] Soit E un ensemble à $n \geq 3$ éléments. Montrer que le groupe alterné $\mathfrak{A}(E)$ est simple si et seulement si $n \neq 4$.