Méthode de Laplace

 $\begin{array}{c} {\rm Chen\ Thomas} \\ {\rm t.chen.thomas1[at]gmail.com} \end{array}$

17 mai 2024

Attention

- 1. Ce document contient certainement des coquilles. N'hésitez pas à me le signaler. De même si vous avez une question.
- 2. Pour les recasages, ce sont les miens mais ce développement se case peut-être ailleurs et je n'y ai pas réfléchi.
- 3. Il se peut que ce développement dure plus de 15 minutes. J'ai essayé de le découper pour faire des recollements personnalisés.

Leçons

• 224 : Exemples de développements asymptotiques de suites et de fonctions.

Références

[1] X. Gourdon. Analyse. Ellipses, 2020.

Tout est dans [1].

Lemme 1. Soit $\alpha > -1, \beta > 0, c > 0, b \in]0, +\infty]$. Alors

$$J(t) := \int_0^b x^{\alpha} e^{-txc^{\beta}} dx \underset{t \to +\infty}{\sim} \frac{1}{\beta} \Gamma\left(\frac{\alpha+1}{\beta}\right) ct^{-\frac{\alpha+1}{\beta}}.$$

 $D\acute{e}monstration.\ J(t)$ existe pour tout t>0 par comparaison. On réalise le changement de variable $u=tcx^{\beta}$ à t fixé. On a donc

$$J(t) = \int_0^{tcb^{\beta}} \left(\frac{u}{tc}\right)^{\frac{\alpha}{\beta}} e^{-u} \frac{1}{tc\beta \left(\frac{u}{tc}\right)^{\frac{\beta-1}{\beta}}} du = \underbrace{\frac{1}{\beta} \frac{1}{tc} (tc)^{1-\frac{1}{\beta} - \frac{\alpha}{\beta}}}_{=\frac{1}{\beta} (ct)^{-\frac{\alpha+1}{\beta}}} \underbrace{\int_0^{tcb^{\beta}} u^{\frac{\alpha+1}{\beta} - 1} e^{-u} du}_{t \to +\infty}.$$

Théorème 2 (Méthode de Laplace). Soit g, h mesurables sur \mathbb{R}^{+*} telles que

- 1. $x \mapsto g(x) \exp(h(x)) \in L^1(\mathbb{R}^+)$.
- 2. $\exists \delta_0 > 0, \forall \delta \in]0, \delta_0[, \forall x \geq \delta, h(x) \leq h(\delta)$ (hypothèse vérifiée par une fonction décroissante sur \mathbb{R}^{+*} .
- 3. $\exists \alpha > -1, c > 0, \beta > 0$ tel que

$$g(x) \underset{x \to 0^{+}}{\sim} Ax^{\alpha} \; ; \; h(x) = a - cx^{\beta} + o_{x \to 0^{+}}(x^{\beta}).$$

Alors

$$\int_0^{+\infty} g(x) \exp(th(x)) \mathrm{d}x \underset{t \to +\infty}{\sim} \frac{A}{\beta} \Gamma\left(\frac{\alpha+1}{\beta}\right) e^{at} (ct)^{-\frac{\alpha+1}{\beta}}.$$

Démonstration. En multipliant par e^{-at}/A , on peut supposer que a=0, A=1. Soit donc

$$\varphi(t) := \frac{1}{\beta} \Gamma\left(\frac{\alpha+1}{\beta}\right) (ct)^{-\frac{\alpha+1}{\beta}}.$$

Soit $\varepsilon \in]0,1[$. On va montrer que

1. $\exists \delta \in]0, \delta_0[, \exists t_1 > 0 \text{ tel que}]$

$$\forall t \ge t_1, (1-\varepsilon)^2 (1+\varepsilon)^{-\frac{\alpha+1}{\beta}} \varphi(t) \le \int_0^\delta g(x) \exp(th(x)) dx \le (1+\varepsilon)^2 (1-\varepsilon)^{-\frac{\alpha+1}{\beta}} \varphi(t).$$

2. Pour de tels δ, t_1 ,

$$\int_{\delta}^{+\infty} |g(x)| \exp(th(x)) dx \in o_{t \to +\infty}(\varphi(t)).$$

1. Par définition de l'équivalent, j'ai un $\delta \in]0, \delta_0[$ tel que

$$\forall x \in]0, \delta[, \left| \begin{array}{l} (1-\varepsilon)x^{\alpha} \leq g(x) \leq (1+\varepsilon)x^{\alpha} \\ -c(1+\varepsilon)x^{\beta} \leq h(x) \leq -c(1-\varepsilon)x^{\beta} \leq 0. \end{array} \right.$$

Ainsi, par croissance de l'intégrale, on a

$$(1-\varepsilon)\int_0^\delta x^\alpha e^{-c(1+\varepsilon)tx^\beta}\mathrm{d}x \leq \int_0^\delta g(x)\exp(th(x))\mathrm{d}x \leq (1+\varepsilon)\int_0^\delta x^\alpha e^{-c(1-\varepsilon)tx^\beta}\mathrm{d}x.$$

Par le lemme préliminaire, on a

$$(1-\varepsilon)\int_0^\delta x^\alpha e^{-c(1+\varepsilon)tx^\beta} dx \underset{t\to +\infty}{\sim} \frac{1-\varepsilon}{\beta} \Gamma\left(\frac{\alpha+1}{\beta}\right) (ct)^{-\frac{\alpha+1}{\beta}} (1+\varepsilon)^{-\frac{\alpha+1}{\beta}} = (1-\varepsilon)(1+\varepsilon)^{-\frac{\alpha+1}{\beta}} \varphi(t).$$

De même pour l'autre intégrale, et donc, par définition de l'équivalent, il existe un temps t_1 tel que $\forall t \geq t_1$,

$$(1 - \varepsilon) \int_0^\delta x^\alpha e^{-c(1+\varepsilon)tx^\beta} dx \ge (1 - \varepsilon)(1 - \varepsilon)(1 + \varepsilon)^{-\frac{\alpha+1}{\beta}} \varphi(t)$$

et

$$(1+\varepsilon)\int_0^\delta x^\alpha e^{-c(1-\varepsilon)tx^\beta} \mathrm{d}x \le (1+\varepsilon)(1+\varepsilon)(1-\varepsilon)^{-\frac{\alpha+1}{\beta}}\varphi(t).$$

2. Soit $\mu := h(\delta) > 0$ car $h(\delta) < 0$. Par hypothèse, pour tout $x \ge \delta$, $h(x) \le -\mu$. Ainsi,

$$\forall x \ge \delta, \forall t > 1, th(x) = (t - 1)h(x) + h(x) \le -(t - 1)\mu + h(x).$$

Par croissance de l'intégrale,

$$\int_{\delta}^{+\infty} |g(x)| \exp(th(x)) dx \le e^{-(t-1)\mu} \underbrace{\int_{\delta}^{+\infty} |g(x)| \exp(h(x)) dx}_{<+\infty} = o(\varphi(t))$$

par croissances comparées, μ étant strictement positif.

Ainsi, grâce aux faits 1 et 2 ainsi démontrés,

$$\int_0^{+\infty} g(x) \exp(th(x)) \mathrm{d}x = \underbrace{\int_0^{\delta} g(x) \exp(th(x)) \mathrm{d}x}_{\sim \varphi(t)} + \underbrace{\int_{\delta}^{+\infty} g(x) \exp(th(x)) \mathrm{d}x}_{\in o_{t \to +\infty}(\varphi(t))} \underset{t \to +\infty}{\sim} \varphi(t).$$

Corollaire 3.

On suppose les mêmes hypothèses mais cette fois-ci sur [0,b] avec $b \in \mathbb{R}^{+*}$. Alors on a

$$\int_0^b f(x) \exp(t\psi(x)) dx \underset{t \to +\infty}{\sim} \frac{A}{\beta} \Gamma\left(\frac{\alpha+1}{\beta}\right) e^{at} (ct)^{-\frac{\alpha+1}{\beta}}.$$

Démonstration. On prolonge g et h sur \mathbb{R}^{+*} en posant f(x) = 0 et $\psi(x) = a - 1$ pour x > b. Puis on applique la méthode de Laplace.

Corollaire 4. Soit f, ψ deux fonctions de classe C^2 sur [a, b] avec $-\infty \le a < b \le +\infty$. On suppose que

- 1. $f \exp \circ \psi$ est intégrable sur [a, b[.
- 2. ψ atteint un maximum local en $c \in]a,b[$ non dégénéré (c'est-à-dire, ici, un point critique où la dérivée seconde ne s'annule pas). En ce point, on demande que f ne s'annule pas. On demande de plus que ψ' ne s'annule en aucun autre point.

Alors

$$\int_a^b f(x) \exp(t\psi(x)) dx \underset{t \to +\infty}{\sim} \Gamma(1/2) f(c) e^{t\psi(c)} \sqrt{\frac{2}{-t\psi''(c)}}.$$

Démonstration. On a

$$\int_a^b f(x) \exp(t\psi(x)) dx = \int_a^c f(x) \exp(t\psi(x)) dx + \int_c^b f(x) \exp(t\psi(x)) dx.$$

On réalise les changements de variables u=c-x et u=x-c pour obtenir

$$\int_{a}^{b} f(x) \exp(t\psi(x)) dx = \int_{0}^{c-a} f(c-x) \exp(t\psi(c-x)) dx + \int_{0}^{b-c} f(x+c) \exp(t\psi(x+c)) dx.$$

On souhaite maintenant appliquer le premier corollaire. Pour cela, vérifions les hypothèses.

- 1. L'intégrabilité est automatique par hypothèse et ce, dans les deux cas.
- 2. On vérifie trivialement le point 2. ψ ne peut changer de signe qu'au niveau de c et change effectivement de signe puisque $\psi''(c) \neq 0$. Ainsi, puisque c'est un maximum, ψ est croissante sur [a,c] puis décroissante sur [c,b[. Ainsi, $x \mapsto \psi(c-x)$ est décroissante sur [0,c-a] et $x \mapsto \psi(x+c)$ est décroissante sur [0,b-c].
- 3. Pour ψ , on traduit l'hypothèse 2 de notre corollaire comme suit : ψ étant de classe \mathcal{C}^2 , par Taylor-Young, on a $\psi(c-x)=\psi(c)-x\psi'(c)+x^2\psi''(c)/2+o_{x\to 0}(x^2)=\psi(c)-x^2|\psi''(c)|/2+o_{x\to 0}(x^2)$ et $\psi(c+x)$ a le même développement limité. Pour f, on a $f(c-x)=f(c)(-x)^0+o_{x\to 0}(1)$ et f(c+x) a le même développement limité.

On a donc les hypothèse du corollaire avec $A=f(c), \alpha=0, a=\psi(c), c=|\varphi''(c)|/2, \beta=2$ donc on a deux fois le même équivalent. On peut donc les sommer et obtenir le résultat souhaité.

Application: Formule de Stirling. On rappelle que

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = x!$$

(factorielle d'un réel, généralisation pour un entier). On souhaite obtenir un équivalent quand $x \to +\infty$. Pour cela,

$$\Gamma(x+1) = x^{x+1} \int_0^{+\infty} e^{x(\ln(u)-u)} du.$$

On est dans le cadre d'application de la méthode de Laplace avec f = 1 et $\psi(x) = \ln(x) - x$. ψ admet un point critique non dégénéré en 1 et atteint un maximum en 1. D'ailleurs, ψ' ne s'annule nulle par ailleurs et f(1) = 1(1) = 1. Enfin, on manipule effectivement une fonction intégrable. Par la méthode de Laplace,

$$\int_0^{+\infty} e^{x(\ln(u)-u)} du \underset{x \to +\infty}{\sim} \Gamma(1/2) e^{-x} \sqrt{2/x}.$$

Ainsi,

$$\Gamma(x+1) \underset{x \to +\infty}{\sim} \sqrt{2\pi} x^{x+1/2} e^{-x}.$$