Théorème de réduction de Jordan par la dualité

$\begin{array}{c} {\rm Chen\ Thomas} \\ {\rm t.chen.thomas1[at]gmail.com} \end{array}$

16 mai 2024

Attention

- 1. Ce document contient certainement des coquilles. N'hésitez pas à me le signaler. De même si vous avez une question.
- 2. Pour les recasages, ce sont les miens mais ce développement se case peut-être ailleurs et je n'y ai pas réfléchi.
- 3. Il se peut que ce développement dure plus de 15 minutes. J'ai essayé de le découper pour faire des recollements personnalisés.

Leçons

- 148: Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications.
- 159 : Formes linéaires et dualité en dimension finie. Exemples et applications.

Références

[1] J.-E. Rombaldi. Mathématiques pour l'agrégation : Algèbre & géométrie. deBoeck Supérieur, 2021.

Tout est dans [1]

Lemme 1. Soit $u \in \mathcal{L}(E)$ nilpotent d'ordre $q \geq 1$. Soit $x \in E, x \notin \ker(u^{q-1})$. La famille $B_{u,x} = (u^k(x))_{0 \leq k \leq q-1}$ est libre et $F = \operatorname{Vect}(B_{u,x})$ est stable par u.

Démonstration. Puisque $u^{q-1} \neq 0$, il existe $x \in E \setminus \ker(u^{q-1})$. Soit $(\lambda_k)_{0 \leq k \leq n}$ tel que $\sum_{k=0}^{q-1} \lambda_k u^k(x) = 0$. Soit $A = \{k \in [0, q-1] : \lambda_k \neq 0\}$. A est une partie bornée de \mathbb{N} . Supposons que A est non vide. A admet alors un plus grand élément, disons n_0 . Alors $\forall k < n_0, \lambda_k = 0$ donc

$$0 = \sum_{k=n_0}^{q-1} \lambda_k u^k(x).$$

On compose par u^{q-1-n_0} . Alors $\lambda_{n_0}u^{q-1}(x)=0$ donc $\lambda_{n_0}=0$. Absurde. Donc A est vide et $B_{u,x}$ est libre. La stabilité est immédiate étant donné que $u(u^k(x)) \in B_{u,x}$ par construction.

Lemme 2. Soit $u \in \mathcal{L}(E)$ nilpotente d'indice q. Il existe $q \in E^*$ et $x \in E$ tel que $F = \text{Vect}((u^k(x))_{0 \le k \le q-1})$ et $G = H^{\circ}$ avec $H = \text{Vect}((^tu)^k(\varphi))_{0 \le k \le q-1})$ stables par u avec $E = F \oplus G$.

Démonstration. Notons $G = \{y \in E : \forall \varphi \in H, \varphi(y) = 0\}$. Alors $\dim(E) = \dim(G) + \dim(H)$. Si H est stable par tu , G est stable par u^1 . tu est nilpotente d'indice q donc $u^{q-1} \neq 0$. Ainsi, il existe $\varphi \in E^*$ tel que $(^tu)^{q-1}(\varphi) \neq 0$ c'est-à-dire $\varphi \circ u^{q-1} \neq 0$. Soit donc x tel que $\varphi \circ u^{q-1}(x) \neq 0$. Alors nécessairement $u^{q-1}(x) \neq 0$ donc par deux fois le lemme, on peut construire F et G tel que $\dim(F) = \dim(H) = q$, F étant stable par u et G stable par G donc G stable par G.

On a $\dim(F) + \dim(G) = \dim(H) + \dim(G) = n$ donc il suffit d'avoir $F \cap G = \{0\}$ pour obtenir le résultat.

Soit donc $y \in F \cap G$. Alors $y = \sum_{k=0}^{q-1} \lambda_k u^k(x)$. Soit $A = \{k \in [1, q-1] : \lambda_k \neq 0\}$. A est une partie bornée de \mathbb{N} .

Supposons que A est non vide. A admet alors un plus grand élément, disons n_0 . Alors $\forall k < n_0, \lambda_k = 0$ donc

$$y = \sum_{k=n_0}^{q-1} \lambda_k u^k(x).$$

On a $u^{q-1-n_0}(y) \in G$ donc pour le φ précédent, on a

$$\lambda_{n_0}\varphi(u^{q-1-n_0}(x)) = \varphi(u^{q-1-n_0}(y)) = 0$$

donc $\lambda_{n_0} = 0$ ce qui est absurde. Donc A est vide et y = 0.

Théorème 3. Soit $u \in \mathcal{L}(E)$ nilpotent d'indice q. Alors il existe $B = \bigcup_{i=1}^{r} B_i$ concaténation de bases avec $E_i = \text{Vect}(B_i)$ tel que

- 1. E_i est stable par u pour tout $i \in [1, r]$,
- 2. $u_{E_i} =: u_i \text{ est tel que } Mat_{B_i}(u_i) = J_i(0)^2$.

 $D\acute{e}monstration$. On procède par récurrence sur la dimension de E, le cas n=1 étant immédiat car u=0.

Supposons le résultat acquis pour k < n. Soit $u \in \mathcal{L}(E)$ nilpotent d'indice q avec $\dim(E) = n$. Soit $\varphi \in E^*, x \in E, F, G$ comme dans le lemme. Notons $B_1 = B_{u,x}$. Alors

$$Mat_{B_1}(u_F) = J_q(0)$$

avec $q = \dim(E_1)$. Si q = n, c'est bon. Sinon, soit B_2 base de G et $B = B_1 \uplus B_2$. Alors par stabilité de F et G par u, on a

$$\operatorname{Mat}_{B}(u) = \begin{pmatrix} \operatorname{Mat}_{B_{1}}(u_{F}) & 0\\ 0 & \operatorname{Mat}_{B_{2}}(u_{G}) \end{pmatrix}.$$

Or, $\operatorname{Mat}_{B_2}(u_G)$ est une matrice nilpotente d'indice au plus q et $\dim B_2 < n$. Par récurrence, on peut décomposer la base B de sorte que $\operatorname{Mat}_{B_2}(u_G)$ a la forme voulue.

Finalement, la matrice dans la base B a la forme voulue.

1. En effet, $\forall y \in G, \forall \varphi \in H, \varphi(u(y)) = {}^{t}u)(\varphi(y)) = 0 \text{ donc } u(G) \subset G.$

t.chen.thomas1[at]gmail.com

^{2.} matrice nulle avec une sous-diagonale de 1 de taille $i \times i$